k 平均法アルゴリズムを使用してデータをクラスタ化します。ユークリッド距離(デフォルト)またはマンハッタン距離のいずれかを使用できます。マンハッタン距離を使用する場合、重心は平均ではなくコンポーネントごとの中央値として計算されます。詳細については、次をご覧ください。
D. Arthur, S. Vassilvitskii: k-means++: 慎重なシード処理の利点。In: Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, 1027-1035, 2007.
[[["わかりやすい","easyToUnderstand","thumb-up"],["問題の解決に役立った","solvedMyProblem","thumb-up"],["その他","otherUp","thumb-up"]],[["必要な情報がない","missingTheInformationINeed","thumb-down"],["複雑すぎる / 手順が多すぎる","tooComplicatedTooManySteps","thumb-down"],["最新ではない","outOfDate","thumb-down"],["翻訳に関する問題","translationIssue","thumb-down"],["サンプル / コードに問題がある","samplesCodeIssue","thumb-down"],["その他","otherDown","thumb-down"]],["最終更新日 2025-07-26 UTC。"],[[["Clusters data using the k-means algorithm with either Euclidean (default) or Manhattan distance."],["If Manhattan distance is selected, centroids are calculated using the component-wise median instead of the mean."],["Offers various initialization methods including random, k-means++, canopy, and farthest first."],["Allows customization of distance calculation, iteration limits, and performance optimization through parameters."]]],["The k-means algorithm clusters data using either Euclidean or Manhattan distance. Manhattan distance uses component-wise median for centroids, while Euclidean uses the mean. Initialization methods include random, k-means++, canopy, and farthest first. Canopies can be used to optimize distance calculations. Parameters control the number of clusters, pruning frequency, density thresholds, and distance settings. Additional options include limiting iterations, preserving data order, and using a fast distance calculation mode.\n"]]