Annuncio: tutti i progetti non commerciali registrati per l'utilizzo di Earth Engine prima del 15 aprile 2025 devono verificare l'idoneità non commerciale per mantenere l'accesso a Earth Engine.
Mantieni tutto organizzato con le raccolte
Salva e classifica i contenuti in base alle tue preferenze.
Implementazione dell'algoritmo di clustering Cobweb. Per ulteriori informazioni, vedi:
D. Fisher (1987). Acquisizione di conoscenze tramite il clustering concettuale incrementale. Machine learning. 2(2):139-172 e J. H. Gennari, P. Langley, D. Fisher (1990). Modelli di formazione incrementale dei concetti. Intelligenza artificiale. 40:11-61.
[[["Facile da capire","easyToUnderstand","thumb-up"],["Il problema è stato risolto","solvedMyProblem","thumb-up"],["Altra","otherUp","thumb-up"]],[["Mancano le informazioni di cui ho bisogno","missingTheInformationINeed","thumb-down"],["Troppo complicato/troppi passaggi","tooComplicatedTooManySteps","thumb-down"],["Obsoleti","outOfDate","thumb-down"],["Problema di traduzione","translationIssue","thumb-down"],["Problema relativo a esempi/codice","samplesCodeIssue","thumb-down"],["Altra","otherDown","thumb-down"]],["Ultimo aggiornamento 2025-07-26 UTC."],[[["Implements the Cobweb clustering algorithm for incremental conceptual clustering."],["Utilizes acuity and cutoff parameters to control cluster formation based on standard deviation and category utility."],["Offers flexibility in initialization through a user-defined random number seed."],["Based on research by Fisher (1987) and Gennari, Langley, & Fisher (1990) in machine learning and artificial intelligence."]]],["The core content details the implementation of the Cobweb clustering algorithm. It allows users to create a clusterer with the `ee.Clusterer.wekaCobweb` function. This function takes three arguments: `acuity` (minimum standard deviation, default 1), `cutoff` (minimum category utility, default 0.002), and `seed` (random number seed, default 42). The function returns a `Clusterer` object. References to academic papers by Fisher and Gennari, Langley, and Fisher are also provided for more information about the algorithm.\n"]]