Pengumuman: Semua project nonkomersial yang terdaftar untuk menggunakan Earth Engine sebelum 15 April 2025 harus memverifikasi kelayakan nonkomersial untuk mempertahankan akses. Jika Anda belum melakukan verifikasi hingga 26 September 2025, akses Anda mungkin ditangguhkan.
Kumpulan data yang akan digunakan untuk pelatihan.
inputProperties
Daftar, default: null
Daftar nama properti yang akan disertakan sebagai data pelatihan. Setiap fitur harus memiliki semua properti ini, dan nilainya harus berupa angka. Argumen ini bersifat opsional jika kumpulan input berisi properti 'band_order' (seperti yang dihasilkan oleh Image.sample).
subsampling
Float, default: 1
Faktor subsampling opsional, dalam (0, 1].
subsamplingSeed
Bilangan bulat, default: 0
Bibit pengacakan yang akan digunakan untuk pengambilan sampel sekunder.
[[["Mudah dipahami","easyToUnderstand","thumb-up"],["Memecahkan masalah saya","solvedMyProblem","thumb-up"],["Lainnya","otherUp","thumb-up"]],[["Informasi yang saya butuhkan tidak ada","missingTheInformationINeed","thumb-down"],["Terlalu rumit/langkahnya terlalu banyak","tooComplicatedTooManySteps","thumb-down"],["Sudah usang","outOfDate","thumb-down"],["Masalah terjemahan","translationIssue","thumb-down"],["Masalah kode / contoh","samplesCodeIssue","thumb-down"],["Lainnya","otherDown","thumb-down"]],["Terakhir diperbarui pada 2025-07-26 UTC."],[],["The `Clusterer.train` method trains a Clusterer using a FeatureCollection. It takes a collection of features and uses their numeric properties as training data, ignoring feature geometry. Users specify `inputProperties` (a list of numeric property names) to be used for training. Subsampling can be employed by setting the `subsampling` (factor between 0 and 1) and optionally, the `subsamplingSeed` to control randomness. The method returns the trained `Clusterer` object.\n"]]