Penggunaan | Hasil |
---|---|
Classifier.train(features, classProperty, inputProperties, subsampling, subsamplingSeed) | Pengklasifikasi |
Argumen | Jenis | Detail |
---|---|---|
ini: classifier | Pengklasifikasi | Pengklasifikasi input. |
features | FeatureCollection | Kumpulan data yang akan digunakan untuk pelatihan. |
classProperty | String | Nama properti yang berisi nilai class. Setiap fitur harus memiliki properti ini dan nilainya harus berupa angka. |
inputProperties | Daftar, default: null | Daftar nama properti yang akan disertakan sebagai data pelatihan. Setiap fitur harus memiliki semua properti ini dan nilainya harus berupa angka. Argumen ini bersifat opsional jika kumpulan input berisi properti 'band_order', (seperti yang dihasilkan oleh Image.sample). |
subsampling | Float, default: 1 | Faktor subsampling opsional, dalam (0, 1]. |
subsamplingSeed | Bilangan bulat, default: 0 | Bibit pengacakan yang akan digunakan untuk pengambilan sampel sekunder. |
Contoh
Code Editor (JavaScript)
// A Sentinel-2 surface reflectance image, reflectance bands selected, // serves as the source for training and prediction in this contrived example. var img = ee.Image('COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG') .select('B.*'); // ESA WorldCover land cover map, used as label source in classifier training. var lc = ee.Image('ESA/WorldCover/v100/2020'); // Remap the land cover class values to a 0-based sequential series. var classValues = [10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 100]; var remapValues = ee.List.sequence(0, 10); var label = 'lc'; lc = lc.remap(classValues, remapValues).rename(label).toByte(); // Add land cover as a band of the reflectance image and sample 100 pixels at // 10 m scale from each land cover class within a region of interest. var roi = ee.Geometry.Rectangle(-122.347, 37.743, -122.024, 37.838); var sample = img.addBands(lc).stratifiedSample({ numPoints: 100, classBand: label, region: roi, scale: 10, geometries: true }); // Add a random value field to the sample and use it to approximately split 80% // of the features into a training set and 20% into a validation set. sample = sample.randomColumn(); var trainingSample = sample.filter('random <= 0.8'); var validationSample = sample.filter('random > 0.8'); // Train a 10-tree random forest classifier from the training sample. var trainedClassifier = ee.Classifier.smileRandomForest(10).train({ features: trainingSample, classProperty: label, inputProperties: img.bandNames() }); // Get information about the trained classifier. print('Results of trained classifier', trainedClassifier.explain()); // Get a confusion matrix and overall accuracy for the training sample. var trainAccuracy = trainedClassifier.confusionMatrix(); print('Training error matrix', trainAccuracy); print('Training overall accuracy', trainAccuracy.accuracy()); // Get a confusion matrix and overall accuracy for the validation sample. validationSample = validationSample.classify(trainedClassifier); var validationAccuracy = validationSample.errorMatrix(label, 'classification'); print('Validation error matrix', validationAccuracy); print('Validation accuracy', validationAccuracy.accuracy()); // Classify the reflectance image from the trained classifier. var imgClassified = img.classify(trainedClassifier); // Add the layers to the map. var classVis = { min: 0, max: 10, palette: ['006400' ,'ffbb22', 'ffff4c', 'f096ff', 'fa0000', 'b4b4b4', 'f0f0f0', '0064c8', '0096a0', '00cf75', 'fae6a0'] }; Map.setCenter(-122.184, 37.796, 12); Map.addLayer(img, {bands: ['B11', 'B8', 'B3'], min: 100, max: 3500}, 'img'); Map.addLayer(lc, classVis, 'lc'); Map.addLayer(imgClassified, classVis, 'Classified'); Map.addLayer(roi, {color: 'white'}, 'ROI', false, 0.5); Map.addLayer(trainingSample, {color: 'black'}, 'Training sample', false); Map.addLayer(validationSample, {color: 'white'}, 'Validation sample', false);
import ee import geemap.core as geemap
Colab (Python)
# A Sentinel-2 surface reflectance image, reflectance bands selected, # serves as the source for training and prediction in this contrived example. img = ee.Image( 'COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG' ).select('B.*') # ESA WorldCover land cover map, used as label source in classifier training. lc = ee.Image('ESA/WorldCover/v100/2020') # Remap the land cover class values to a 0-based sequential series. class_values = [10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 100] remap_values = ee.List.sequence(0, 10) label = 'lc' lc = lc.remap(class_values, remap_values).rename(label).toByte() # Add land cover as a band of the reflectance image and sample 100 pixels at # 10 m scale from each land cover class within a region of interest. roi = ee.Geometry.Rectangle(-122.347, 37.743, -122.024, 37.838) sample = img.addBands(lc).stratifiedSample( numPoints=100, classBand=label, region=roi, scale=10, geometries=True ) # Add a random value field to the sample and use it to approximately split 80% # of the features into a training set and 20% into a validation set. sample = sample.randomColumn() training_sample = sample.filter('random <= 0.8') validation_sample = sample.filter('random > 0.8') # Train a 10-tree random forest classifier from the training sample. trained_classifier = ee.Classifier.smileRandomForest(10).train( features=training_sample, classProperty=label, inputProperties=img.bandNames(), ) # Get information about the trained classifier. display('Results of trained classifier', trained_classifier.explain()) # Get a confusion matrix and overall accuracy for the training sample. train_accuracy = trained_classifier.confusionMatrix() display('Training error matrix', train_accuracy) display('Training overall accuracy', train_accuracy.accuracy()) # Get a confusion matrix and overall accuracy for the validation sample. validation_sample = validation_sample.classify(trained_classifier) validation_accuracy = validation_sample.errorMatrix(label, 'classification') display('Validation error matrix', validation_accuracy) display('Validation accuracy', validation_accuracy.accuracy()) # Classify the reflectance image from the trained classifier. img_classified = img.classify(trained_classifier) # Add the layers to the map. class_vis = { 'min': 0, 'max': 10, 'palette': [ '006400', 'ffbb22', 'ffff4c', 'f096ff', 'fa0000', 'b4b4b4', 'f0f0f0', '0064c8', '0096a0', '00cf75', 'fae6a0', ], } m = geemap.Map() m.set_center(-122.184, 37.796, 12) m.add_layer( img, {'bands': ['B11', 'B8', 'B3'], 'min': 100, 'max': 3500}, 'img' ) m.add_layer(lc, class_vis, 'lc') m.add_layer(img_classified, class_vis, 'Classified') m.add_layer(roi, {'color': 'white'}, 'ROI', False, 0.5) m.add_layer(training_sample, {'color': 'black'}, 'Training sample', False) m.add_layer( validation_sample, {'color': 'white'}, 'Validation sample', False ) m