ee.Classifier.train

طبقه‌بندی کننده را روی مجموعه‌ای از ویژگی‌ها آموزش می‌دهد، با استفاده از ویژگی‌های عددی مشخص شده هر ویژگی به عنوان داده آموزشی. هندسه ویژگی ها نادیده گرفته می شود.

استفاده برمی گرداند
Classifier. train (features, classProperty, inputProperties , subsampling , subsamplingSeed ) طبقه بندی کننده
استدلال تایپ کنید جزئیات
این: classifier طبقه بندی کننده یک طبقه بندی کننده ورودی
features مجموعه ویژگی ها مجموعه ای برای آموزش
classProperty رشته نام ویژگی حاوی مقدار کلاس. هر ویژگی باید این ویژگی را داشته باشد و مقدار آن عددی باشد.
inputProperties لیست، پیش فرض: null لیستی از نام های دارایی که باید به عنوان داده های آموزشی درج شود. هر ویژگی باید همه این ویژگی ها را داشته باشد و مقادیر آنها عددی باشد. این آرگومان اختیاری است اگر مجموعه ورودی حاوی ویژگی 'band_order' باشد (همانطور که توسط Image.sample تولید شده است).
subsampling شناور، پیش فرض: 1 یک عامل انتخابی زیر نمونه برداری، در (0، 1).
subsamplingSeed عدد صحیح، پیش فرض: 0 یک دانه تصادفی برای استفاده برای نمونه گیری فرعی.

نمونه ها

ویرایشگر کد (جاوا اسکریپت)

// A Sentinel-2 surface reflectance image, reflectance bands selected,
// serves as the source for training and prediction in this contrived example.
var img = ee.Image('COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG')
              .select('B.*');

// ESA WorldCover land cover map, used as label source in classifier training.
var lc = ee.Image('ESA/WorldCover/v100/2020');

// Remap the land cover class values to a 0-based sequential series.
var classValues = [10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 100];
var remapValues = ee.List.sequence(0, 10);
var label = 'lc';
lc = lc.remap(classValues, remapValues).rename(label).toByte();

// Add land cover as a band of the reflectance image and sample 100 pixels at
// 10 m scale from each land cover class within a region of interest.
var roi = ee.Geometry.Rectangle(-122.347, 37.743, -122.024, 37.838);
var sample = img.addBands(lc).stratifiedSample({
  numPoints: 100,
  classBand: label,
  region: roi,
  scale: 10,
  geometries: true
});

// Add a random value field to the sample and use it to approximately split 80%
// of the features into a training set and 20% into a validation set.
sample = sample.randomColumn();
var trainingSample = sample.filter('random <= 0.8');
var validationSample = sample.filter('random > 0.8');

// Train a 10-tree random forest classifier from the training sample.
var trainedClassifier = ee.Classifier.smileRandomForest(10).train({
  features: trainingSample,
  classProperty: label,
  inputProperties: img.bandNames()
});

// Get information about the trained classifier.
print('Results of trained classifier', trainedClassifier.explain());

// Get a confusion matrix and overall accuracy for the training sample.
var trainAccuracy = trainedClassifier.confusionMatrix();
print('Training error matrix', trainAccuracy);
print('Training overall accuracy', trainAccuracy.accuracy());

// Get a confusion matrix and overall accuracy for the validation sample.
validationSample = validationSample.classify(trainedClassifier);
var validationAccuracy = validationSample.errorMatrix(label, 'classification');
print('Validation error matrix', validationAccuracy);
print('Validation accuracy', validationAccuracy.accuracy());

// Classify the reflectance image from the trained classifier.
var imgClassified = img.classify(trainedClassifier);

// Add the layers to the map.
var classVis = {
  min: 0,
  max: 10,
  palette: ['006400' ,'ffbb22', 'ffff4c', 'f096ff', 'fa0000', 'b4b4b4',
            'f0f0f0', '0064c8', '0096a0', '00cf75', 'fae6a0']
};
Map.setCenter(-122.184, 37.796, 12);
Map.addLayer(img, {bands: ['B11', 'B8', 'B3'], min: 100, max: 3500}, 'img');
Map.addLayer(lc, classVis, 'lc');
Map.addLayer(imgClassified, classVis, 'Classified');
Map.addLayer(roi, {color: 'white'}, 'ROI', false, 0.5);
Map.addLayer(trainingSample, {color: 'black'}, 'Training sample', false);
Map.addLayer(validationSample, {color: 'white'}, 'Validation sample', false);

راه اندازی پایتون

برای اطلاعات در مورد API پایتون و استفاده از geemap برای توسعه تعاملی به صفحه محیط پایتون مراجعه کنید.

import ee
import geemap.core as geemap

کولب (پایتون)

# A Sentinel-2 surface reflectance image, reflectance bands selected,
# serves as the source for training and prediction in this contrived example.
img = ee.Image(
    'COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG'
).select('B.*')

# ESA WorldCover land cover map, used as label source in classifier training.
lc = ee.Image('ESA/WorldCover/v100/2020')

# Remap the land cover class values to a 0-based sequential series.
class_values = [10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 100]
remap_values = ee.List.sequence(0, 10)
label = 'lc'
lc = lc.remap(class_values, remap_values).rename(label).toByte()

# Add land cover as a band of the reflectance image and sample 100 pixels at
# 10 m scale from each land cover class within a region of interest.
roi = ee.Geometry.Rectangle(-122.347, 37.743, -122.024, 37.838)
sample = img.addBands(lc).stratifiedSample(
    numPoints=100, classBand=label, region=roi, scale=10, geometries=True
)

# Add a random value field to the sample and use it to approximately split 80%
# of the features into a training set and 20% into a validation set.
sample = sample.randomColumn()
training_sample = sample.filter('random <= 0.8')
validation_sample = sample.filter('random > 0.8')

# Train a 10-tree random forest classifier from the training sample.
trained_classifier = ee.Classifier.smileRandomForest(10).train(
    features=training_sample,
    classProperty=label,
    inputProperties=img.bandNames(),
)

# Get information about the trained classifier.
display('Results of trained classifier', trained_classifier.explain())

# Get a confusion matrix and overall accuracy for the training sample.
train_accuracy = trained_classifier.confusionMatrix()
display('Training error matrix', train_accuracy)
display('Training overall accuracy', train_accuracy.accuracy())

# Get a confusion matrix and overall accuracy for the validation sample.
validation_sample = validation_sample.classify(trained_classifier)
validation_accuracy = validation_sample.errorMatrix(label, 'classification')
display('Validation error matrix', validation_accuracy)
display('Validation accuracy', validation_accuracy.accuracy())

# Classify the reflectance image from the trained classifier.
img_classified = img.classify(trained_classifier)

# Add the layers to the map.
class_vis = {
    'min': 0,
    'max': 10,
    'palette': [
        '006400',
        'ffbb22',
        'ffff4c',
        'f096ff',
        'fa0000',
        'b4b4b4',
        'f0f0f0',
        '0064c8',
        '0096a0',
        '00cf75',
        'fae6a0',
    ],
}
m = geemap.Map()
m.set_center(-122.184, 37.796, 12)
m.add_layer(
    img, {'bands': ['B11', 'B8', 'B3'], 'min': 100, 'max': 3500}, 'img'
)
m.add_layer(lc, class_vis, 'lc')
m.add_layer(img_classified, class_vis, 'Classified')
m.add_layer(roi, {'color': 'white'}, 'ROI', False, 0.5)
m.add_layer(training_sample, {'color': 'black'}, 'Training sample', False)
m.add_layer(
    validation_sample, {'color': 'white'}, 'Validation sample', False
)
m