ee.Array.eigen

Tính toán các vectơ riêng và giá trị riêng thực của một mảng vuông 2D gồm A hàng và A cột. Trả về một mảng có A hàng và A+1 cột, trong đó mỗi hàng chứa một giá trị riêng ở cột đầu tiên và vectơ riêng tương ứng ở A cột còn lại. Các hàng được sắp xếp theo giá trị riêng, theo thứ tự giảm dần.

 Cách triển khai này sử dụng DecompositionFactory.eig() từ https://ejml.org.

Cách sử dụngGiá trị trả về
Array.eigen()Mảng
Đối sốLoạiThông tin chi tiết
this: inputMảngMột mảng vuông, 2D để tính toán phân tích giá trị riêng.

Ví dụ

Trình soạn thảo mã (JavaScript)

print(ee.Array([[0, 0], [0, 0]]).eigen());  // [[0,0,1],[0,1,0]]

print(ee.Array([[1, 0], [0, 0]]).eigen());  // [[1,1,0],[0,0,1]]
print(ee.Array([[0, 1], [0, 0]]).eigen());  // [[0,0,1],[0,1,0]]
print(ee.Array([[0, 0], [1, 0]]).eigen());  // [[0,-1,0],[0,0,-1]]
print(ee.Array([[0, 0], [0, 1]]).eigen());  // [[1,0,1],[0,1,0]]

print(ee.Array([[1, 1], [0, 0]]).eigen());  // [[1,1,0],[0,-1/√2,1/√2]]
print(ee.Array([[0, 0], [1, 1]]).eigen());  // [[1,0,-1],[0,-1/√2,1/√2]]]

print(ee.Array([[1, 0], [1, 0]]).eigen());  // [[1,1/√2,1/√2],[0,0,1]]
print(ee.Array([[1, 0], [0, 1]]).eigen());  // [[1,1,0],[1,0,1]]
print(ee.Array([[0, 1], [1, 0]]).eigen());  // [[1,1/√2,1/√2],[-1,1/√2,-1/√2]]
print(ee.Array([[0, 1], [0, 1]]).eigen());  // [[1,1/√2,1/√2],[0,1,0]]

print(ee.Array([[1, 1], [1, 0]]).eigen());  // [[1.62,0.85,0.53],[-0.62,0.53]]
print(ee.Array([[1, 1], [0, 1]]).eigen());  // [[1,0,1],[1,1,0]]
print(ee.Array([[1, 0], [1, 1]]).eigen());  // [[1,-1,0],[1,0,-1]]
// [[1.62,-0.53,-0.85],[-0.62,-0.85,0.53]]
print(ee.Array([[0, 1], [1, 1]]).eigen());

print(ee.Array([[1, 1], [1, 1]]).eigen());  // [[2,1/√2,1/√2],[0,1/√2,-1/√2]]

var matrix = ee.Array([
  [1, 0, 0],
  [0, 1, 0],
  [0, 0, 1]]);
print(matrix.eigen());  // [[1,1,0,0],[1,0,1,0],[1,0,0,1]]

var matrix = ee.Array([
  [2, 0, 0],
  [0, 3, 0],
  [0, 0, 4]]);
print(matrix.eigen());  // [[4,0,0,1],[3,0,1,0],[2,1,0,0]]

matrix = ee.Array([
  [1, 0, 0],
  [0, 0, 0],
  [0, 0, 0]]);
print(matrix.eigen());  // [[1,1,0,0],[0,0,1,0],[0,0,0,1]]

matrix = ee.Array([
  [1, 1, 1],
  [1, 1, 1],
  [1, 1, 1]]);
// [[3,-0.58,-0.58,-0.58],[0,0,-1/√2,1/√2],[0,-0.82,0.41,0.41]]
print(matrix.eigen());

Thiết lập Python

Hãy xem trang Môi trường Python để biết thông tin về API Python và cách sử dụng geemap cho quá trình phát triển tương tác.

import ee
import geemap.core as geemap

Colab (Python)

display(ee.Array([[0, 0], [0, 0]]).eigen())  # [[0, 0, 1], [0, 1, 0]]

display(ee.Array([[1, 0], [0, 0]]).eigen())  # [[1, 1, 0], [0,0,1]]
display(ee.Array([[0, 1], [0, 0]]).eigen())  # [[0, 0, 1], [0, 1, 0]]
display(ee.Array([[0, 0], [1, 0]]).eigen())  # [[0, -1, 0], [0, 0, -1]]
display(ee.Array([[0, 0], [0, 1]]).eigen())  # [[1, 0, 1], [0, 1, 0]]

# [[1, 1, 0], [0, -1/√2, 1/√2]]
display(ee.Array([[1, 1], [0, 0]]).eigen())

# [[1, 0, -1], [0, -1/√2, 1/√2]]]
display(ee.Array([[0, 0], [1, 1]]).eigen())

# [[1, 1/√2, 1/√2], [0, 0, 1]]
display(ee.Array([[1, 0], [1, 0]]).eigen())
display(ee.Array([[1, 0], [0, 1]]).eigen())  # [[1, 1, 0], [1, 0, 1]]

# [[1, 1/√2, 1/√2], [-1, 1/√2, -1/√2]]
display(ee.Array([[0, 1], [1, 0]]).eigen())

# [[1, 1/√2, 1/√2], [0, 1, 0]]
display(ee.Array([[0, 1], [0, 1]]).eigen())

# [[1.62, 0.85, 0.53], [-0.62, 0.53]]
display(ee.Array([[1, 1], [1, 0]]).eigen())
display(ee.Array([[1, 1], [0, 1]]).eigen())  # [[1, 0, 1], [1, 1, 0]]
display(ee.Array([[1, 0], [1, 1]]).eigen())  # [[1, -1, 0], [1, 0, -1]]

# [[1.62, -0.53, -0.85], [-0.62, -0.85, 0.53]]
display(ee.Array([[0, 1], [1, 1]]).eigen())

# [[2, 1/√2, 1/√2], [0, 1/√2, -1/√2]]
display(ee.Array([[1, 1], [1, 1]]).eigen())

matrix = ee.Array([
  [1, 0, 0],
  [0, 1, 0],
  [0, 0, 1]])
display(matrix.eigen())  # [[1, 1, 0, 0], [1, 0, 1, 0], [1, 0, 0, 1]]

matrix = ee.Array([
  [2, 0, 0],
  [0, 3, 0],
  [0, 0, 4]])
display(matrix.eigen())  # [[4, 0, 0, 1], [3, 0, 1, 0], [2, 1, 0, 0]]

matrix = ee.Array([
  [1, 0, 0],
  [0, 0, 0],
  [0, 0, 0]])
display(matrix.eigen())  # [[1, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]

matrix = ee.Array([
  [1, 1, 1],
  [1, 1, 1],
  [1, 1, 1]])
# [[3, -0.58, -0.58, -0.58], [0, 0, -1/√2, 1/√2], [0, -0.82, 0.41, 0.41]]
display(matrix.eigen())