ee.Array.eigen

تحسب هذه الدالة المتجهات الذاتية والقيم الذاتية الحقيقية لمصفوفة مربّعة ثنائية الأبعاد تتضمّن A صفوف وA أعمدة. تعرض هذه الدالة صفيفًا يتضمّن A صفًا وA+1 عمودًا، حيث يحتوي كل صف على قيمة ذاتية في العمود الأول، ومتّجه ذاتي مطابق في الأعمدة المتبقية من A. يتم ترتيب الصفوف حسب القيمة الذاتية، بترتيب تنازلي.

 يستخدم هذا التنفيذ DecompositionFactory.eig() من https://ejml.org.

الاستخدامالمرتجعات
Array.eigen()مصفوفة
الوسيطةالنوعالتفاصيل
هذا: inputمصفوفةمصفوفة مربّعة ثنائية الأبعاد يتم منها حساب تحليل القيم الذاتية.

أمثلة

محرّر الرموز البرمجية (JavaScript)

print(ee.Array([[0, 0], [0, 0]]).eigen());  // [[0,0,1],[0,1,0]]

print(ee.Array([[1, 0], [0, 0]]).eigen());  // [[1,1,0],[0,0,1]]
print(ee.Array([[0, 1], [0, 0]]).eigen());  // [[0,0,1],[0,1,0]]
print(ee.Array([[0, 0], [1, 0]]).eigen());  // [[0,-1,0],[0,0,-1]]
print(ee.Array([[0, 0], [0, 1]]).eigen());  // [[1,0,1],[0,1,0]]

print(ee.Array([[1, 1], [0, 0]]).eigen());  // [[1,1,0],[0,-1/√2,1/√2]]
print(ee.Array([[0, 0], [1, 1]]).eigen());  // [[1,0,-1],[0,-1/√2,1/√2]]]

print(ee.Array([[1, 0], [1, 0]]).eigen());  // [[1,1/√2,1/√2],[0,0,1]]
print(ee.Array([[1, 0], [0, 1]]).eigen());  // [[1,1,0],[1,0,1]]
print(ee.Array([[0, 1], [1, 0]]).eigen());  // [[1,1/√2,1/√2],[-1,1/√2,-1/√2]]
print(ee.Array([[0, 1], [0, 1]]).eigen());  // [[1,1/√2,1/√2],[0,1,0]]

print(ee.Array([[1, 1], [1, 0]]).eigen());  // [[1.62,0.85,0.53],[-0.62,0.53]]
print(ee.Array([[1, 1], [0, 1]]).eigen());  // [[1,0,1],[1,1,0]]
print(ee.Array([[1, 0], [1, 1]]).eigen());  // [[1,-1,0],[1,0,-1]]
// [[1.62,-0.53,-0.85],[-0.62,-0.85,0.53]]
print(ee.Array([[0, 1], [1, 1]]).eigen());

print(ee.Array([[1, 1], [1, 1]]).eigen());  // [[2,1/√2,1/√2],[0,1/√2,-1/√2]]

var matrix = ee.Array([
  [1, 0, 0],
  [0, 1, 0],
  [0, 0, 1]]);
print(matrix.eigen());  // [[1,1,0,0],[1,0,1,0],[1,0,0,1]]

var matrix = ee.Array([
  [2, 0, 0],
  [0, 3, 0],
  [0, 0, 4]]);
print(matrix.eigen());  // [[4,0,0,1],[3,0,1,0],[2,1,0,0]]

matrix = ee.Array([
  [1, 0, 0],
  [0, 0, 0],
  [0, 0, 0]]);
print(matrix.eigen());  // [[1,1,0,0],[0,0,1,0],[0,0,0,1]]

matrix = ee.Array([
  [1, 1, 1],
  [1, 1, 1],
  [1, 1, 1]]);
// [[3,-0.58,-0.58,-0.58],[0,0,-1/√2,1/√2],[0,-0.82,0.41,0.41]]
print(matrix.eigen());

إعداد Python

راجِع صفحة بيئة Python للحصول على معلومات حول واجهة برمجة التطبيقات Python واستخدام geemap للتطوير التفاعلي.

import ee
import geemap.core as geemap

Colab (Python)

display(ee.Array([[0, 0], [0, 0]]).eigen())  # [[0, 0, 1], [0, 1, 0]]

display(ee.Array([[1, 0], [0, 0]]).eigen())  # [[1, 1, 0], [0,0,1]]
display(ee.Array([[0, 1], [0, 0]]).eigen())  # [[0, 0, 1], [0, 1, 0]]
display(ee.Array([[0, 0], [1, 0]]).eigen())  # [[0, -1, 0], [0, 0, -1]]
display(ee.Array([[0, 0], [0, 1]]).eigen())  # [[1, 0, 1], [0, 1, 0]]

# [[1, 1, 0], [0, -1/√2, 1/√2]]
display(ee.Array([[1, 1], [0, 0]]).eigen())

# [[1, 0, -1], [0, -1/√2, 1/√2]]]
display(ee.Array([[0, 0], [1, 1]]).eigen())

# [[1, 1/√2, 1/√2], [0, 0, 1]]
display(ee.Array([[1, 0], [1, 0]]).eigen())
display(ee.Array([[1, 0], [0, 1]]).eigen())  # [[1, 1, 0], [1, 0, 1]]

# [[1, 1/√2, 1/√2], [-1, 1/√2, -1/√2]]
display(ee.Array([[0, 1], [1, 0]]).eigen())

# [[1, 1/√2, 1/√2], [0, 1, 0]]
display(ee.Array([[0, 1], [0, 1]]).eigen())

# [[1.62, 0.85, 0.53], [-0.62, 0.53]]
display(ee.Array([[1, 1], [1, 0]]).eigen())
display(ee.Array([[1, 1], [0, 1]]).eigen())  # [[1, 0, 1], [1, 1, 0]]
display(ee.Array([[1, 0], [1, 1]]).eigen())  # [[1, -1, 0], [1, 0, -1]]

# [[1.62, -0.53, -0.85], [-0.62, -0.85, 0.53]]
display(ee.Array([[0, 1], [1, 1]]).eigen())

# [[2, 1/√2, 1/√2], [0, 1/√2, -1/√2]]
display(ee.Array([[1, 1], [1, 1]]).eigen())

matrix = ee.Array([
  [1, 0, 0],
  [0, 1, 0],
  [0, 0, 1]])
display(matrix.eigen())  # [[1, 1, 0, 0], [1, 0, 1, 0], [1, 0, 0, 1]]

matrix = ee.Array([
  [2, 0, 0],
  [0, 3, 0],
  [0, 0, 4]])
display(matrix.eigen())  # [[4, 0, 0, 1], [3, 0, 1, 0], [2, 1, 0, 0]]

matrix = ee.Array([
  [1, 0, 0],
  [0, 0, 0],
  [0, 0, 0]])
display(matrix.eigen())  # [[1, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]

matrix = ee.Array([
  [1, 1, 1],
  [1, 1, 1],
  [1, 1, 1]])
# [[3, -0.58, -0.58, -0.58], [0, 0, -1/√2, 1/√2], [0, -0.82, 0.41, 0.41]]
display(matrix.eigen())