ee.Algorithms.Image.Segmentation.SNIC
컬렉션을 사용해 정리하기
내 환경설정을 기준으로 콘텐츠를 저장하고 분류하세요.
SNIC (Simple Non-Iterative Clustering) 기반 슈퍼픽셀 클러스터링 클러스터 ID와 각 입력 밴드의 클러스터별 평균을 출력합니다. '시드' 이미지가 입력으로 제공되지 않으면 생성된 시드 위치가 포함된 '시드' 밴드가 출력에 포함됩니다. Achanta, Radhakrishna, Susstrunk, Sabine, 'Superpixels and Polygons using Simple Non-Iterative Clustering', CVPR, 2017 참고
[[["이해하기 쉬움","easyToUnderstand","thumb-up"],["문제가 해결됨","solvedMyProblem","thumb-up"],["기타","otherUp","thumb-up"]],[["필요한 정보가 없음","missingTheInformationINeed","thumb-down"],["너무 복잡함/단계 수가 너무 많음","tooComplicatedTooManySteps","thumb-down"],["오래됨","outOfDate","thumb-down"],["번역 문제","translationIssue","thumb-down"],["샘플/코드 문제","samplesCodeIssue","thumb-down"],["기타","otherDown","thumb-down"]],["최종 업데이트: 2025-07-26(UTC)"],[],["SNIC clustering segments an image into superpixels, outputting cluster IDs and per-cluster averages for each input band. Key parameters include `size` (seed spacing), `compactness` (cluster shape), and `connectivity`. A user can provide `seeds` to define seed locations; otherwise, they are generated. The output `Image` includes cluster IDs, band averages, and optionally generated seed locations. Adjusting `size` and `compactness` is crucial for optimal results, which are also affected by pixel scale.\n"]]