אנחנו משיקים ב-Earth Engine רמות מכסה לשימוש לא מסחרי כדי להגן על משאבי מחשוב משותפים ולהבטיח ביצועים אמינים לכולם. כל הפרויקטים הלא מסחריים יצטרכו לבחור רמת מכסת שימוש עד 27 באפריל 2026, אחרת הם ישתמשו ברמת הקהילה כברירת מחדל. המיכסות לפי רמה ייכנסו לתוקף בכל הפרויקטים (ללא קשר לתאריך הבחירה של הרמה) ב-27 באפריל 2026. מידע נוסף
ee.Algorithms.Image.Segmentation.KMeans
קל לארגן דפים בעזרת אוספים
אפשר לשמור ולסווג תוכן על סמך ההעדפות שלך.
מבצע אשכולות K-Means בתמונת הקלט. פלט של תמונה עם פס אחד שמכיל את המזהה של האשכול שאליו כל פיקסל שייך. האלגוריתם יכול לפעול על רשת קבועה של תאים לא חופפים (gridSize, שיכול להיות קטן יותר מ-tile) או על tiles עם חפיפה (neighborhoodSize). ברירת המחדל היא שימוש באריחים ללא חפיפה. האשכולות בתא או במשבצת מסוימים לא קשורים לאשכולות בתא או במשבצת אחרים. יכול להיות שכל אשכול שחוצה את הגבול של תא או משבצת יקבל שתי תוויות שונות בשני החצאים. כל פיקסל קלט עם מסכות חלקיות מוסתר לחלוטין בפלט.
גודל השכונה. הסכום שבו צריך להרחיב כל משבצת (חפיפה) כשמחשבים את האשכולות. האפשרות הזו בלעדית עם gridSize.
gridSize
מספר שלם, ברירת מחדל: null
גודל תא הרשת. אם הערך גדול מ-0, האלגוריתם kMeans יופעל באופן עצמאי על תאים בגודל הזה. ההשפעה של הפעולה הזו היא הגבלת הגודל של כל אשכול ל-gridSize או פחות. האפשרות הזו לא יכולה לפעול יחד עם neighborhoodSize.
forceConvergence
בוליאני, ברירת מחדל: false
אם הערך הוא True, תוצג שגיאה אם לא תושג התכנסות לפני numIterations.
uniqueLabels
בוליאני, ברירת מחדל: true
אם הערך הוא True, לאשכולות מוקצים מזהים ייחודיים. אחרת, הם חוזרים על עצמם בכל משבצת או תא ברשת.
[[["התוכן קל להבנה","easyToUnderstand","thumb-up"],["התוכן עזר לי לפתור בעיה","solvedMyProblem","thumb-up"],["סיבה אחרת","otherUp","thumb-up"]],[["חסרים לי מידע או פרטים","missingTheInformationINeed","thumb-down"],["התוכן מורכב מדי או עם יותר מדי שלבים","tooComplicatedTooManySteps","thumb-down"],["התוכן לא עדכני","outOfDate","thumb-down"],["בעיה בתרגום","translationIssue","thumb-down"],["בעיה בדוגמאות/בקוד","samplesCodeIssue","thumb-down"],["סיבה אחרת","otherDown","thumb-down"]],["עדכון אחרון: 2025-07-26 (שעון UTC)."],[],["K-Means clustering is applied to an input image, generating a single-band output image where each pixel is assigned a cluster ID. Clustering can occur within a fixed grid (`gridSize`) or within overlapping tiles (`neighborhoodSize`). By default, tiles have no overlap. Clusters are independent per cell/tile, potentially resulting in different labels for clusters crossing boundaries. Parameters include the number of clusters and iterations. Convergence can be enforced and the ID labels be unique or repeat depending on the specified parameter.\n"]]