با مجموعهها، منظم بمانید
ذخیره و طبقهبندی محتوا براساس اولویتهای شما.
خوشه بندی K-Means را روی تصویر ورودی انجام می دهد. یک تصویر 1 باندی حاوی شناسه خوشه ای که هر پیکسل به آن تعلق دارد را خروجی می دهد. این الگوریتم میتواند روی یک شبکه ثابت از سلولهای غیر همپوشانی (gridSize، که میتواند کوچکتر از یک کاشی باشد) یا روی کاشیهای دارای همپوشانی (neighborhoodSize) کار کند. پیش فرض استفاده از کاشی ها بدون همپوشانی است. خوشه ها در یک سلول یا کاشی با خوشه های دیگر ارتباطی ندارند. هر خوشه ای که از یک سلول یا مرز کاشی می گذرد ممکن است دو برچسب مختلف در دو نیمه دریافت کند. هر پیکسل ورودی با ماسک جزئی به طور کامل در خروجی پوشانده می شود.
اندازه محله مقدار گسترش هر کاشی (همپوشانی) هنگام محاسبه خوشه ها. این گزینه با gridSize متقابلاً منحصر به فرد است.
gridSize
عدد صحیح، پیش فرض: null
اندازه سلول شبکه اگر بزرگتر از 0 باشد، kMeans به طور مستقل روی سلول هایی با این اندازه اجرا می شود. این باعث می شود که اندازه هر خوشه به gridSize یا کوچکتر محدود شود. این گزینه به صورت متقابلا انحصاری با محله سایز است.
forceConvergence
بولی، پیش فرض: نادرست
اگر درست باشد، اگر همگرایی قبل از اعداد به دست نیاید، خطایی ایجاد می شود.
uniqueLabels
بولی، پیش فرض: درست است
اگر درست باشد، به خوشهها شناسههای منحصربهفرد اختصاص داده میشود. در غیر این صورت، آنها در هر کاشی یا سلول شبکه تکرار می شوند.
تاریخ آخرین بهروزرسانی 2025-07-24 بهوقت ساعت هماهنگ جهانی.
[[["درک آسان","easyToUnderstand","thumb-up"],["مشکلم را برطرف کرد","solvedMyProblem","thumb-up"],["غیره","otherUp","thumb-up"]],[["اطلاعاتی که نیاز دارم وجود ندارد","missingTheInformationINeed","thumb-down"],["بیشازحد پیچیده/ مراحل بسیار زیاد","tooComplicatedTooManySteps","thumb-down"],["قدیمی","outOfDate","thumb-down"],["مشکل ترجمه","translationIssue","thumb-down"],["مشکل کد / نمونهها","samplesCodeIssue","thumb-down"],["غیره","otherDown","thumb-down"]],["تاریخ آخرین بهروزرسانی 2025-07-24 بهوقت ساعت هماهنگ جهانی."],[[["Performs K-Means clustering on an input image, assigning each pixel to a cluster and outputting a single-band image with cluster IDs."],["Offers flexibility to control clustering with parameters like `numClusters`, `numIterations`, neighborhood size, and grid size."],["`neighborhoodSize` dictates the tile overlap for cluster computation, while `gridSize` allows independent clustering within fixed-size cells."],["Setting `uniqueLabels` to true ensures distinct cluster IDs across the entire image, while false results in repeated IDs per tile or grid cell."],["By default, uses tiles without overlap for clustering and assigns unique labels to clusters."]]],["K-Means clustering is applied to an input image, generating a single-band output image where each pixel is assigned a cluster ID. Clustering can occur within a fixed grid (`gridSize`) or within overlapping tiles (`neighborhoodSize`). By default, tiles have no overlap. Clusters are independent per cell/tile, potentially resulting in different labels for clusters crossing boundaries. Parameters include the number of clusters and iterations. Convergence can be enforced and the ID labels be unique or repeat depending on the specified parameter.\n"]]