[[["เข้าใจง่าย","easyToUnderstand","thumb-up"],["แก้ปัญหาของฉันได้","solvedMyProblem","thumb-up"],["อื่นๆ","otherUp","thumb-up"]],[["ไม่มีข้อมูลที่ฉันต้องการ","missingTheInformationINeed","thumb-down"],["ซับซ้อนเกินไป/มีหลายขั้นตอนมากเกินไป","tooComplicatedTooManySteps","thumb-down"],["ล้าสมัย","outOfDate","thumb-down"],["ปัญหาเกี่ยวกับการแปล","translationIssue","thumb-down"],["ตัวอย่าง/ปัญหาเกี่ยวกับโค้ด","samplesCodeIssue","thumb-down"],["อื่นๆ","otherDown","thumb-down"]],["อัปเดตล่าสุด 2025-07-27 UTC"],[[["The GMeans algorithm automatically determines the optimal number of clusters for image segmentation using iterative k-means and a normality test."],["It outputs an image with a 'clusters' band, assigning each pixel an integer ID corresponding to its cluster."],["Users can control segmentation granularity through `gridSize` for non-overlapping cells or `neighborhoodSize` for overlapping tiles."],["Clusters are independent within each cell or tile, potentially leading to different labels for the same cluster across boundaries."],["The algorithm is best suited for images with a narrow dynamic range, like those with byte or short data types."]]],["The G-Means algorithm performs image clustering by iteratively applying k-means and a normality test to determine the optimal number of clusters. It outputs an image with a 'clusters' band, assigning each pixel to a cluster. It can operate on a fixed grid (gridSize) or tiles with overlap (neighborhoodSize), with default being tiles without overlap. Input images should have a narrow dynamic range and pixels with partial mask will be fully masked in the output. Clusters can be assigned unique ID's or repeat per tile.\n"]]