입력 이미지에 G-Means 클러스터링을 실행합니다. k-평균을 반복적으로 적용한 후 정규성 테스트를 실행하여 사용할 클러스터 수를 자동으로 결정합니다. 출력에는 각 픽셀이 속한 클러스터의 정수 ID가 포함된 '클러스터' 밴드가 포함됩니다. 이 알고리즘은 겹치지 않는 고정된 셀 그리드 (gridSize, 타일보다 작을 수 있음) 또는 겹치는 타일 (neighborhoodSize)에서 작동할 수 있습니다. 기본값은 겹치지 않는 타일을 사용하는 것입니다. 한 셀 또는 타일의 클러스터는 다른 셀의 클러스터와 관련이 없습니다. 셀 또는 타일 경계에 걸쳐 있는 클러스터는 두 절반에서 서로 다른 라벨을 받을 수 있습니다. 부분 마스크가 있는 입력 픽셀은 출력에서 완전히 마스크됩니다. 이 알고리즘은 동적 범위가 좁은 이미지 (바이트 또는 짧은 정수)에서만 성능이 우수할 것으로 예상됩니다.
G를 참고하세요. Hamerly 및 C. 엘칸 'Learning the k in k-means'. NIPS, 2003.
[[["이해하기 쉬움","easyToUnderstand","thumb-up"],["문제가 해결됨","solvedMyProblem","thumb-up"],["기타","otherUp","thumb-up"]],[["필요한 정보가 없음","missingTheInformationINeed","thumb-down"],["너무 복잡함/단계 수가 너무 많음","tooComplicatedTooManySteps","thumb-down"],["오래됨","outOfDate","thumb-down"],["번역 문제","translationIssue","thumb-down"],["샘플/코드 문제","samplesCodeIssue","thumb-down"],["기타","otherDown","thumb-down"]],["최종 업데이트: 2025-07-27(UTC)"],[],["The G-Means algorithm performs image clustering by iteratively applying k-means and a normality test to determine the optimal number of clusters. It outputs an image with a 'clusters' band, assigning each pixel to a cluster. It can operate on a fixed grid (gridSize) or tiles with overlap (neighborhoodSize), with default being tiles without overlap. Input images should have a narrow dynamic range and pixels with partial mask will be fully masked in the output. Clusters can be assigned unique ID's or repeat per tile.\n"]]