public interface Condition
Known Indirect Subclasses

Condition factors out the Object monitor methods (wait, notify and notifyAll) into distinct objects to give the effect of having multiple wait-sets per object, by combining them with the use of arbitrary Lock implementations. Where a Lock replaces the use of synchronized methods and statements, a Condition replaces the use of the Object monitor methods.

Conditions (also known as condition queues or condition variables) provide a means for one thread to suspend execution (to "wait") until notified by another thread that some state condition may now be true. Because access to this shared state information occurs in different threads, it must be protected, so a lock of some form is associated with the condition. The key property that waiting for a condition provides is that it atomically releases the associated lock and suspends the current thread, just like Object.wait.

A Condition instance is intrinsically bound to a lock. To obtain a Condition instance for a particular Lock instance use its newCondition() method.

As an example, suppose we have a bounded buffer which supports put and take methods. If a take is attempted on an empty buffer, then the thread will block until an item becomes available; if a put is attempted on a full buffer, then the thread will block until a space becomes available. We would like to keep waiting put threads and take threads in separate wait-sets so that we can use the optimization of only notifying a single thread at a time when items or spaces become available in the buffer. This can be achieved using two Condition instances.

 class BoundedBuffer {
   final Lock lock = new ReentrantLock();
   final Condition notFull  = lock.newCondition(); 
   final Condition notEmpty = lock.newCondition(); 

   final Object[] items = new Object[100];
   int putptr, takeptr, count;

   public void put(Object x) throws InterruptedException {
     try {
       while (count == items.length)
       items[putptr] = x;
       if (++putptr == items.length) putptr = 0;
     } finally {

   public Object take() throws InterruptedException {
     try {
       while (count == 0)
       Object x = items[takeptr];
       if (++takeptr == items.length) takeptr = 0;
       return x;
     } finally {
(The ArrayBlockingQueue class provides this functionality, so there is no reason to implement this sample usage class.)

A Condition implementation can provide behavior and semantics that is different from that of the Object monitor methods, such as guaranteed ordering for notifications, or not requiring a lock to be held when performing notifications. If an implementation provides such specialized semantics then the implementation must document those semantics.

Note that Condition instances are just normal objects and can themselves be used as the target in a synchronized statement, and can have their own monitor wait and notify methods invoked. Acquiring the monitor lock of a Condition instance, or using its monitor methods, has no specified relationship with acquiring the Lock associated with that Condition or the use of its {@linkplain #await waiting} and {@linkplain #signal signalling} methods. It is recommended that to avoid confusion you never use Condition instances in this way, except perhaps within their own implementation.

Except where noted, passing a null value for any parameter will result in a