CyclicBarrier

public class CyclicBarrier extends Object

A synchronization aid that allows a set of threads to all wait for each other to reach a common barrier point. CyclicBarriers are useful in programs involving a fixed sized party of threads that must occasionally wait for each other. The barrier is called cyclic because it can be re-used after the waiting threads are released.

A CyclicBarrier supports an optional Runnable command that is run once per barrier point, after the last thread in the party arrives, but before any threads are released. This barrier action is useful for updating shared-state before any of the parties continue.

Sample usage: Here is an example of using a barrier in a parallel decomposition design:

 class Solver {
   final int N;
   final float[][] data;
   final CyclicBarrier barrier;

   class Worker implements Runnable {
     int myRow;
     Worker(int row) { myRow = row; }
     public void run() {
       while (!done()) {
         processRow(myRow);

         try {
           barrier.await();
         } catch (InterruptedException ex) {
           return;
         } catch (BrokenBarrierException ex) {
           return;
         }
       }
     }
   }

   public Solver(float[][] matrix) {
     data = matrix;
     N = matrix.length;
     Runnable barrierAction =
       new Runnable() { public void run() { mergeRows(...); }};
     barrier = new CyclicBarrier(N, barrierAction);

     List<Thread> threads = new ArrayList<>(N);
     for (int i = 0; i < N; i++) {
       Thread thread = new Thread(new Worker(i));
       threads.add(thread);
       thread.start();
     }

     // wait until done
     for (Thread thread : threads)
       thread.join();
   }
 }
Here, each worker thread processes a row of the matrix then waits at the barrier until all rows have been processed. When all rows are processed the supplied Runnable barrier action is executed and merges the rows. If the merger determines that a solution has been found then done() will return true and each worker will terminate.

If the barrier action does not rely on the parties being suspended when it is executed, then any of the threads in the party could execute that action when it is released. To facilitate this, each invocation of await() returns the arrival index of that thread at the barrier. You can then choose which thread should execute the barrier action, for example:

 if (barrier.await() == 0) {
   // log the completion of this iteration
 }

The CyclicBarrier uses an all-or-none breakage model for failed synchronization attempts: If a thread leaves a barrier point prematurely because of interruption, failure, or timeout, all other threads waiting at that barrier point will also leave abnormally via BrokenBarrierException (or InterruptedException if they too were interrupted at about the same time).

Memory consistency effects: Actions in a thread prior to calling await() happen-before actions that are part of the barrier action, which in turn happen-before actions following a successful return from the corresponding await() in other threads.

See Also

Public Constructor Summary

CyclicBarrier(int parties, Runnable barrierAction)
Creates a new CyclicBarrier that will trip when the given number of parties (threads) are waiting upon it, and which will execute the given barrier action when the barrier is tripped, performed by the last thread entering the barrier.
CyclicBarrier(int parties)
Creates a new CyclicBarrier that will trip when the given number of parties (threads) are waiting upon it, and does not perform a predefined action when the barrier is tripped.

Public Method Summary

int
await()
Waits until all {@linkplain #getParties parties} have invoked await on this barrier.
int