Announcement: All noncommercial projects registered to use Earth Engine before April 15, 2025 must verify noncommercial eligibility to maintain Earth Engine access.
Stay organized with collections
Save and categorize content based on your preferences.
By default, reducers applied to imagery weight the inputs according to the mask value.
This is relevant in the context of fractional pixels created through operations such as
clip(). Adjust this behavior by calling unweighted() on the
reducer. Using an unweighted reducer forces all pixels in the region to have the same
weight. The following example illustrates how pixel weighting can affect the reducer
output:
The difference in results is due to pixels at the edge of the region receiving a weight
of one as a result of calling unweighted() on the reducer.
In order to obtain an explicitly weighted output, it is preferable to set the weights
explicitly with splitWeights() called on the reducer. A reducer modified by
splitWeights() takes two inputs, where the second input is the weight. The
following example illustrates splitWeights() by computing the weighted mean
Normalized Difference Vegetation Index (NDVI) in a region, with the weights given by
cloud score (the cloudier, the lower the weight):
Observe that cloudWeight needs to be added as a band prior to calling
reduceRegion(). The result indicates that the estimated mean NDVI is
higher as a result of decreasing the weight of cloudy pixels.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2025-01-02 UTC."],[[["\u003cp\u003eBy default, reducers in Earth Engine weight pixels based on their mask values, which can affect results when using operations like \u003ccode\u003eclip()\u003c/code\u003e.\u003c/p\u003e\n"],["\u003cp\u003eThe \u003ccode\u003eunweighted()\u003c/code\u003e function forces all pixels in a region to have equal weight when applying a reducer.\u003c/p\u003e\n"],["\u003cp\u003eTo explicitly control pixel weights, use \u003ccode\u003esplitWeights()\u003c/code\u003e on the reducer and provide a separate weight band in the input image.\u003c/p\u003e\n"],["\u003cp\u003eUsing weighted reducers allows for more accurate analysis by adjusting the influence of specific pixels based on factors like cloud cover.\u003c/p\u003e\n"]]],["Reducers, by default, weight image inputs based on mask values, relevant for fractional pixels. The `unweighted()` method forces equal pixel weighting within a region. `splitWeights()` allows for explicit weighting, demonstrated by weighting a mean Normalized Difference Vegetation Index (NDVI) by cloud score, reducing cloudy pixel influence. The difference between using weighted, unweighted or splitweight methods is illustrated with examples of Landsat 8 imagery using `reduceRegion()`. Weights should be added as bands before using `reduceRegion()`.\n"],null,["By default, reducers applied to imagery weight the inputs according to the mask value.\nThis is relevant in the context of fractional pixels created through operations such as\n`clip()`. Adjust this behavior by calling `unweighted()` on the\nreducer. Using an unweighted reducer forces all pixels in the region to have the same\nweight. The following example illustrates how pixel weighting can affect the reducer\noutput:\n\nCode Editor (JavaScript) \n\n```javascript\n// Load a Landsat 8 input image.\nvar image = ee.Image('LANDSAT/LC08/C02/T1/LC08_044034_20140318');\n\n// Create an arbitrary region.\nvar geometry = ee.Geometry.Rectangle(-122.496, 37.532, -121.554, 37.538);\n\n// Make an NDWI image. It will have one band named 'nd'.\nvar ndwi = image.normalizedDifference(['B3', 'B5']);\n\n// Compute the weighted mean of the NDWI image clipped to the region.\nvar weighted = ndwi.clip(geometry)\n .reduceRegion({\n reducer: ee.Reducer.mean(),\n geometry: geometry,\n scale: 30})\n .get('nd');\n\n// Compute the UN-weighted mean of the NDWI image clipped to the region.\nvar unweighted = ndwi.clip(geometry)\n .reduceRegion({\n reducer: ee.Reducer.mean().unweighted(),\n geometry: geometry,\n scale: 30})\n .get('nd');\n\n// Observe the difference between weighted and unweighted reductions.\nprint('weighted:', weighted);\nprint('unweighted', unweighted);\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\nColab (Python) \n\n```python\n# Load a Landsat 8 input image.\nimage = ee.Image('LANDSAT/LC08/C02/T1/LC08_044034_20140318')\n\n# Create an arbitrary region.\ngeometry = ee.Geometry.Rectangle(-122.496, 37.532, -121.554, 37.538)\n\n# Make an NDWI image. It will have one band named 'nd'.\nndwi = image.normalizedDifference(['B3', 'B5'])\n\n# Compute the weighted mean of the NDWI image clipped to the region.\nweighted = (\n ndwi.clip(geometry)\n .reduceRegion(reducer=ee.Reducer.mean(), geometry=geometry, scale=30)\n .get('nd')\n)\n\n# Compute the UN-weighted mean of the NDWI image clipped to the region.\nunweighted = (\n ndwi.clip(geometry)\n .reduceRegion(\n reducer=ee.Reducer.mean().unweighted(), geometry=geometry, scale=30\n )\n .get('nd')\n)\n\n# Observe the difference between weighted and unweighted reductions.\ndisplay('weighted:', weighted)\ndisplay('unweighted', unweighted)\n```\n\nThe difference in results is due to pixels at the edge of the region receiving a weight\nof one as a result of calling `unweighted()` on the reducer.\n\nIn order to obtain an explicitly weighted output, it is preferable to set the weights\nexplicitly with `splitWeights()` called on the reducer. A reducer modified by\n`splitWeights()` takes two inputs, where the second input is the weight. The\nfollowing example illustrates `splitWeights()` by computing the weighted mean\nNormalized Difference Vegetation Index (NDVI) in a region, with the weights given by\ncloud score (the cloudier, the lower the weight):\n\nCode Editor (JavaScript) \n\n```javascript\n// Load an input Landsat 8 image.\nvar image = ee.Image('LANDSAT/LC08/C02/T1_TOA/LC08_186059_20130419');\n\n// Compute cloud score and reverse it such that the highest\n// weight (100) is for the least cloudy pixels.\nvar cloudWeight = ee.Image(100).subtract(\n ee.Algorithms.Landsat.simpleCloudScore(image).select(['cloud']));\n\n// Compute NDVI and add the cloud weight band.\nvar ndvi = image.normalizedDifference(['B5', 'B4']).addBands(cloudWeight);\n\n// Define an arbitrary region in a cloudy area.\nvar region = ee.Geometry.Rectangle(9.9069, 0.5981, 10.5, 0.9757);\n\n// Use a mean reducer.\nvar reducer = ee.Reducer.mean();\n\n// Compute the unweighted mean.\nvar unweighted = ndvi.select(['nd']).reduceRegion(reducer, region, 30);\n\n// compute mean weighted by cloudiness.\nvar weighted = ndvi.reduceRegion(reducer.splitWeights(), region, 30);\n\n// Observe the difference as a result of weighting by cloudiness.\nprint('unweighted:', unweighted);\nprint('weighted:', weighted);\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\nColab (Python) \n\n```python\n# Load an input Landsat 8 image.\nimage = ee.Image('LANDSAT/LC08/C02/T1_TOA/LC08_186059_20130419')\n\n# Compute cloud score and reverse it such that the highest\n# weight (100) is for the least cloudy pixels.\ncloud_weight = ee.Image(100).subtract(\n ee.Algorithms.Landsat.simpleCloudScore(image).select(['cloud'])\n)\n\n# Compute NDVI and add the cloud weight band.\nndvi = image.normalizedDifference(['B5', 'B4']).addBands(cloud_weight)\n\n# Define an arbitrary region in a cloudy area.\nregion = ee.Geometry.Rectangle(9.9069, 0.5981, 10.5, 0.9757)\n\n# Use a mean reducer.\nreducer = ee.Reducer.mean()\n\n# Compute the unweighted mean.\nunweighted = ndvi.select(['nd']).reduceRegion(reducer, region, 30)\n\n# compute mean weighted by cloudiness.\nweighted = ndvi.reduceRegion(reducer.splitWeights(), region, 30)\n\n# Observe the difference as a result of weighting by cloudiness.\ndisplay('unweighted:', unweighted)\ndisplay('weighted:', weighted)\n```\n\nObserve that `cloudWeight` needs to be added as a band prior to calling\n`reduceRegion()`. The result indicates that the estimated mean NDVI is\nhigher as a result of decreasing the weight of cloudy pixels."]]