AI-generated Key Takeaways
-
The
ui.Chartfunction uses a client-side JSON object structured like a Google ChartsDataTableto render charts in Earth Engine. -
A pseudo-
DataTablecan be defined in Earth Engine using either a JavaScript 2-D array or a JavaScript literal object. -
Data for the
ui.Chartmust be a client-side object, requiring the use ofevaluateto transfer computed server-side objects to the client. -
DataTablecolumns can have roles beyond domain and data, such as annotation or interval, which allows for advanced chart customizations like interval charts.
The ui.Chart function renders charts from a client-side JSON object that
follows the same structure as the Google Charts
DataTable,
class, but lacks DataTable methods and mutability. It is essentially a 2-D
table with rows that represent observations and columns that represent
observation attributes. It provides a flexible, base interface to charting in
Earth Engine. It is a good option when a high degree of chart customization is
required.
DataTable schema
There are two ways to define a pseudo-DataTable in Earth Engine: a JavaScript
2-D array and a JavaScript literal object. For most applications, constructing a
2-D array will be the simplest approach. In both cases, the table passed to
ui.Chart must be a client-side object. A manually coded table will be
inherently client-side, whereas a computed object will need to be transferred
client-side using evaluate. Please see the Client vs. Server
page for more information on the distinction between server-side and client-side
objects.
JavaScript array
A 2-D DataTable is composed of an array of rows and columns. Rows are
observations and columns are attributes. The first column defines values for the
x-axis, while additional columns define values for y-axis series. The first row
is expected to be a column header. The simplest header is a series of column
labels, demonstrated in the following array DataTable relating population by
selected states.
var dataTable = [ ['State', 'Population'], ['CA', 37253956], ['NY', 19378102], ['IL', 12830632], ['MI', 9883640], ['OR', 3831074], ];
Optionally, columns can be designated to a role other than defining the domain (x-axis) and data (y-axis series) e.g. annotation, intervals, tooltips, or style. In the following example, the header array is presented as a series of objects, where the role of each column is explicitly defined. Acceptable column roles for each Google Chart type can be found in their respective documentation e.g. Column Chart data format.
var dataTable = [ [{role: 'domain'}, {role: 'data'}, {role: 'annotation'}], ['CA', 37253956, '37.2e6'], ['NY', 19378102, '19.3e6'], ['IL', 12830632, '12.8e6'], ['MI', 9883640, '9.8e6'], ['OR', 3831074, '3.8e6'], ];
Column properties are specified as follows:
| Parameter | Type | Definition |
|---|---|---|
type |
string, recommended | Column data type: 'string', 'number', 'boolean', 'date', 'datetime', or 'timeofday'. |
label |
string, recommended | A label for the column, series label in the chart legend. |
role |
string, recommended | A role for the column (e.g., roles for Column Chart). |
pattern |
string, optional | A number (or date) format string specifying how to display the column value. |
JavaScript object
A DataTable can be formatted as a JavaScript literal object where arrays of
row and column objects are provided. See this
guide
for instructions on specifying column and row parameters.
var dataTable = { cols: [{id: 'name', label: 'State', type: 'string'}, {id: 'pop', label: 'Population', type: 'number'}], rows: [{c: [{v: 'CA'}, {v: 37253956}]}, {c: [{v: 'NY'}, {v: 19378102}]}, {c: [{v: 'IL'}, {v: 12830632}]}, {c: [{v: 'MI'}, {v: 9883640}]}, {c: [{v: 'OR'}, {v: 3831074}]}] };
Manual DataTable chart
Suppose you have a small amount of static data you want to display to a chart.
Use either the JavaScript array or
object specifications to construct
an input to pass to the ui.Chart function. Here, selected state
populations from the U.S. 2010 census are
encoded as a JavaScript array with column header objects that define
column properties. Note that the third column is designated to the role of
'annotation', which adds the population as an annotation to each observation
in the chart.
Code Editor (JavaScript)
// Define a DataTable using a JavaScript array with a column property header. var dataTable = [ [ {label: 'State', role: 'domain', type: 'string'}, {label: 'Population', role: 'data', type: 'number'}, {label: 'Pop. annotation', role: 'annotation', type: 'string'} ], ['CA', 37253956, '37.2e6'], ['NY', 19378102, '19.3e6'], ['IL', 12830632, '12.8e6'], ['MI', 9883640, '9.8e6'], ['OR', 3831074, '3.8e6'] ]; // Define the chart and print it to the console. var chart = ui.Chart(dataTable).setChartType('ColumnChart').setOptions({ title: 'State Population (US census, 2010)', legend: {position: 'none'}, hAxis: {title: 'State', titleTextStyle: {italic: false, bold: true}}, vAxis: {title: 'Population', titleTextStyle: {italic: false, bold: true}}, colors: ['1d6b99'] }); print(chart);
Computed DataTable chart
A DataTable array can be created from a 2-D ee.List passed from the server
to the client via evaluate. A common scenario is to convert properties of an
ee.FeatureCollection, ee.ImageCollection, or element-wise reduction of
these into a DataTable. The strategy applied in the following examples maps a
function over an ee.ImageCollection that reduces the given element,
assembles an ee.List from the reduction results, and attaches the list as a
property called 'row' to the returned element. Each element of the new
collection has a 1-D ee.List that represents a row in a DataTable.
The aggregate_array() function is used to aggregate all of the 'row'
properties into a parent ee.List to create a 2-D server-side ee.List in the
shape required for DataTable. A custom column header is concatenated to the
table and the result is transferred client-side with evaluate, where it is
rendered using the ui.Chart function.
Time series by region
This example shows a time series of MODIS-derived NDVI and EVI vegetation
indices for a forested ecoregion. Each
image in the series is reduced by the ecoregion and its results assembled
as a 'row' property that is aggregated into a DataTable for passing to the
client and charting with ui.Chart. Note that this snippet produces the same
chart generated by the ui.Chart.image.series chart example.
Code Editor (JavaScript)
// Import the example feature collection and subset the forest feature. var forest = ee.FeatureCollection('projects/google/charts_feature_example') .filter(ee.Filter.eq('label', 'Forest')); // Load MODIS vegetation indices data and subset a decade of images. var vegIndices = ee.ImageCollection('MODIS/061/MOD13A1') .filter(ee.Filter.date('2010-01-01', '2020-01-01')) .select(['NDVI', 'EVI']); // Define a function to format an image timestamp as a JavaScript Date string. function formatDate(img) { var millis = img.date().millis().format(); return ee.String('Date(').cat(millis).cat(')'); } // Build a feature collection where each feature has a property that represents // a DataFrame row. var reductionTable = vegIndices.map(function(img) { // Reduce the image to the mean of pixels intersecting the forest ecoregion. var stat = img.reduceRegion( {reducer: ee.Reducer.mean(), geometry: forest, scale: 500}); // Extract the reduction results along with the image date. var date = formatDate(img); // x-axis values. var evi = stat.get('EVI'); // y-axis series 1 values. var ndvi = stat.get('NDVI'); // y-axis series 2 values. // Make a list of observation attributes to define a row in the DataTable. var row = ee.List([date, evi, ndvi]); // Return the row as a property of an ee.Feature. return ee.Feature(null, {'row': row}); }); // Aggregate the 'row' property from all features in the new feature collection // to make a server-side 2-D list (DataTable). var dataTableServer = reductionTable.aggregate_array('row'); // Define column names and properties for the DataTable. The order should // correspond to the order in the construction of the 'row' property above. var columnHeader = ee.List([[ {label: 'Date', role: 'domain', type: 'date'}, {label: 'EVI', role: 'data', type: 'number'}, {label: 'NDVI', role: 'data', type: 'number'} ]]); // Concatenate the column header to the table. dataTableServer = columnHeader.cat(dataTableServer); // Use 'evaluate' to transfer the server-side table to the client, define the // chart and print it to the console. dataTableServer.evaluate(function(dataTableClient) { var chart = ui.Chart(dataTableClient).setOptions({ title: 'Average Vegetation Index Value by Date for Forest', hAxis: { title: 'Date', titleTextStyle: {italic: false, bold: true}, }, vAxis: { title: 'Vegetation index (x1e4)', titleTextStyle: {italic: false, bold: true} }, lineWidth: 5, colors: ['e37d05', '1d6b99'], curveType: 'function' }); print(chart); });
Interval chart
This chart takes advantage of the DataTable column 'role' property
to generate an interval chart.
The chart relates the annual NDVI
profile and inter-annual variance for a pixel near Monterey, CA.
Inter-annual median is presented as a line, while the absolute and interquartile
ranges are shown as bands. Table columns representing each interval are
assigned as such by setting the 'role' column property as 'interval'. Bands
are drawn around the median line by setting the intervals.style chart property
as 'area'.
Code Editor (JavaScript)
// Define a point to extract an NDVI time series for. var geometry = ee.Geometry.Point([-121.679, 36.479]); // Define a band of interest (NDVI), import the MODIS vegetation index dataset, // and select the band. var band = 'NDVI'; var ndviCol = ee.ImageCollection('MODIS/006/MOD13Q1').select(band); // Map over the collection to add a day of year (doy) property to each image. ndviCol = ndviCol.map(function(img) { var doy = ee.Date(img.get('system:time_start')).getRelative('day', 'year'); // Add 8 to day of year number so that the doy label represents the middle of // the 16-day MODIS NDVI composite. return img.set('doy', ee.Number(doy).add(8)); }); // Join all coincident day of year observations into a set of image collections. var distinctDOY = ndviCol.filterDate('2013-01-01', '2014-01-01'); var filter = ee.Filter.equals({leftField: 'doy', rightField: 'doy'}); var join = ee.Join.saveAll('doy_matches'); var joinCol = ee.ImageCollection(join.apply(distinctDOY, ndviCol, filter)); // Calculate the absolute range, interquartile range, and median for the set // of images composing each coincident doy observation group. The result is // an image collection with an image representative per unique doy observation // with bands that describe the 0, 25, 50, 75, 100 percentiles for the set of // coincident doy images. var comp = ee.ImageCollection(joinCol.map(function(img) { var doyCol = ee.ImageCollection.fromImages(img.get('doy_matches')); return doyCol .reduce(ee.Reducer.percentile( [0, 25, 50, 75, 100], ['p0', 'p25', 'p50', 'p75', 'p100'])) .set({'doy': img.get('doy')}); })); // Extract the inter-annual NDVI doy percentile statistics for the // point of interest per unique doy representative. The result is // is a feature collection where each feature is a doy representative that // contains a property (row) describing the respective inter-annual NDVI // variance, formatted as a list of values. var reductionTable = comp.map(function(img) { var stats = ee.Dictionary(img.reduceRegion( {reducer: ee.Reducer.first(), geometry: geometry, scale: 250})); // Order the percentile reduction elements according to how you want columns // in the DataTable arranged (x-axis values need to be first). var row = ee.List([ img.get('doy'), // x-axis, day of year. stats.get(band + '_p50'), // y-axis, median. stats.get(band + '_p0'), // y-axis, min interval. stats.get(band + '_p25'), // y-axis, 1st quartile interval. stats.get(band + '_p75'), // y-axis, 3rd quartile interval. stats.get(band + '_p100') // y-axis, max interval. ]); // Return the row as a property of an ee.Feature. return ee.Feature(null, {row: row}); }); // Aggregate the 'row' properties to make a server-side 2-D array (DataTable). var dataTableServer = reductionTable.aggregate_array('row'); // Define column names and properties for the DataTable. The order should // correspond to the order in the construction of the 'row' property above. var columnHeader = ee.List([[ {label: 'Day of year', role: 'domain'}, {label: 'Median', role: 'data'}, {label: 'p0', role: 'interval'}, {label: 'p25', role: 'interval'}, {label: 'p75', role: 'interval'}, {label: 'p100', role: 'interval'} ]]); // Concatenate the column header to the table. dataTableServer = columnHeader.cat(dataTableServer); // Use 'evaluate' to transfer the server-side table to the client, define the // chart and print it to the console. dataTableServer.evaluate(function(dataTableClient) { var chart = ui.Chart(dataTableClient).setChartType('LineChart').setOptions({ title: 'Annual NDVI Time Series with Inter-Annual Variance', intervals: {style: 'area'}, hAxis: { title: 'Day of year', titleTextStyle: {italic: false, bold: true}, }, vAxis: {title: 'NDVI (x1e4)', titleTextStyle: {italic: false, bold: true}}, colors: ['0f8755'], legend: {position: 'none'} }); print(chart); });
There are many ways to represent intervals. In the following example, boxes are
used instead of bands by changing the intervals.style property to 'boxes'
with respective box styling.
dataTableServer.evaluate(function(dataTableClient) { var chart = ui.Chart(dataTableClient).setChartType('LineChart').setOptions({ title: 'Annual NDVI Time Series with Inter-Annual Variance', intervals: {style: 'boxes', barWidth: 1, boxWidth: 1, lineWidth: 0}, hAxis: { title: 'Day of year', titleTextStyle: {italic: false, bold: true}, }, vAxis: {title: 'NDVI (x1e4)', titleTextStyle: {italic: false, bold: true}}, colors: ['0f8755'], legend: {position: 'none'} }); print(chart); });