Un ImageCollection
è una serie o una sequenza di immagini.
Creare da un ID raccolta
Un ImageCollection
può essere caricato incollando un ID risorsa Earth Engine nel costruttore ImageCollection
. Puoi trovare
ID ImageCollection
nel catalogo di dati. Ad esempio, per caricare la
collezione di riflessività superficiale
di Sentinel-2:
Editor di codice (JavaScript)
var sentinelCollection = ee.ImageCollection('COPERNICUS/S2_SR');
import ee import geemap.core as geemap
Colab (Python)
sentinel_collection = ee.ImageCollection('COPERNICUS/S2_SR')
Questa raccolta contiene tutte le immagini Sentinel-2 del catalogo pubblico. Ce ne sono molti. In genere, è consigliabile filtrare la raccolta come mostrato qui o qui.
Creare da un elenco di immagini
Il costruttore
ee.ImageCollection()
o il metodo di utilità
ee.ImageCollection.fromImages()
creano raccolte di immagini da
elenchi di immagini. Puoi anche creare nuove raccolte di immagini unendo quelle esistenti. Ad esempio:
Editor di codice (JavaScript)
// Create arbitrary constant images. var constant1 = ee.Image(1); var constant2 = ee.Image(2); // Create a collection by giving a list to the constructor. var collectionFromConstructor = ee.ImageCollection([constant1, constant2]); print('collectionFromConstructor: ', collectionFromConstructor); // Create a collection with fromImages(). var collectionFromImages = ee.ImageCollection.fromImages( [ee.Image(3), ee.Image(4)]); print('collectionFromImages: ', collectionFromImages); // Merge two collections. var mergedCollection = collectionFromConstructor.merge(collectionFromImages); print('mergedCollection: ', mergedCollection); // Create a toy FeatureCollection var features = ee.FeatureCollection( [ee.Feature(null, {foo: 1}), ee.Feature(null, {foo: 2})]); // Create an ImageCollection from the FeatureCollection // by mapping a function over the FeatureCollection. var images = features.map(function(feature) { return ee.Image(ee.Number(feature.get('foo'))); }); // Print the resultant collection. print('Image collection: ', images);
import ee import geemap.core as geemap
Colab (Python)
# Create arbitrary constant images. constant_1 = ee.Image(1) constant_2 = ee.Image(2) # Create a collection by giving a list to the constructor. collection_from_constructor = ee.ImageCollection([constant_1, constant_2]) display('Collection from constructor:', collection_from_constructor) # Create a collection with fromImages(). collection_from_images = ee.ImageCollection.fromImages( [ee.Image(3), ee.Image(4)] ) display('Collection from images:', collection_from_images) # Merge two collections. merged_collection = collection_from_constructor.merge(collection_from_images) display('Merged collection:', merged_collection) # Create a toy FeatureCollection features = ee.FeatureCollection( [ee.Feature(None, {'foo': 1}), ee.Feature(None, {'foo': 2})] ) # Create an ImageCollection from the FeatureCollection # by mapping a function over the FeatureCollection. images = features.map(lambda feature: ee.Image(ee.Number(feature.get('foo')))) # Display the resultant collection. display('Image collection:', images)
Tieni presente che in questo esempio viene creato un ImageCollection
mappando una funzione che restituisce un Image
su un FeatureCollection
. Scopri di più sulla mappatura nella sezione Mappatura in una raccolta di immagini. Scopri di più sulle raccolte di elementi nella sezione FeatureCollection.
Creare un grafico da un elenco di gruppi di pertinenza
Crea un ImageCollection
da GeoTiff in Cloud Storage.
Ad esempio:
Editor di codice (JavaScript)
// All the GeoTiffs are in this folder. var uriBase = 'gs://gcp-public-data-landsat/LC08/01/001/002/' + 'LC08_L1GT_001002_20160817_20170322_01_T2/'; // List of URIs, one for each band. var uris = ee.List([ uriBase + 'LC08_L1GT_001002_20160817_20170322_01_T2_B2.TIF', uriBase + 'LC08_L1GT_001002_20160817_20170322_01_T2_B3.TIF', uriBase + 'LC08_L1GT_001002_20160817_20170322_01_T2_B4.TIF', uriBase + 'LC08_L1GT_001002_20160817_20170322_01_T2_B5.TIF', ]); // Make a collection from the list of images. var images = uris.map(ee.Image.loadGeoTIFF); var collection = ee.ImageCollection(images); // Get an RGB image from the collection of bands. var rgb = collection.toBands().rename(['B2', 'B3', 'B4', 'B5']); Map.centerObject(rgb); Map.addLayer(rgb, {bands: ['B4', 'B3', 'B2'], min: 0, max: 20000}, 'rgb');
import ee import geemap.core as geemap
Colab (Python)
# All the GeoTiffs are in this folder. uri_base = ( 'gs://gcp-public-data-landsat/LC08/01/001/002/' + 'LC08_L1GT_001002_20160817_20170322_01_T2/' ) # List of URIs, one for each band. uris = ee.List([ uri_base + 'LC08_L1GT_001002_20160817_20170322_01_T2_B2.TIF', uri_base + 'LC08_L1GT_001002_20160817_20170322_01_T2_B3.TIF', uri_base + 'LC08_L1GT_001002_20160817_20170322_01_T2_B4.TIF', uri_base + 'LC08_L1GT_001002_20160817_20170322_01_T2_B5.TIF', ]) # Make a collection from the list of images. images = uris.map(lambda uri: ee.Image.loadGeoTIFF(uri)) collection = ee.ImageCollection(images) # Get an RGB image from the collection of bands. rgb = collection.toBands().rename(['B2', 'B3', 'B4', 'B5']) m = geemap.Map() m.center_object(rgb) m.add_layer(rgb, {'bands': ['B4', 'B3', 'B2'], 'min': 0, 'max': 20000}, 'rgb') m
Scopri di più sul caricamento di immagini da Cloud GeoTiff.
Creare da un array Zarr v2
Crea un ImageCollection
da un array v2 di Zarr in Cloud Storage acquisendo sezioni di immagini in una dimensione superiore.
Ad esempio:
Editor di codice (JavaScript)
var timeStart = 1000000; var timeEnd = 1000048; var zarrV2ArrayImages = ee.ImageCollection.loadZarrV2Array({ uri: 'gs://gcp-public-data-arco-era5/ar/full_37-1h-0p25deg-chunk-1.zarr-v3/evaporation/.zarray', proj: 'EPSG:4326', axis: 0, starts: [timeStart], ends: [timeEnd] }); print(zarrV2ArrayImages); Map.addLayer(zarrV2ArrayImages, {min: -0.0001, max: 0.00005}, 'Evaporation');
import ee import geemap.core as geemap
Colab (Python)
time_start = 1000000 time_end = 1000048 zarr_v2_array_images = ee.ImageCollection.loadZarrV2Array( uri='gs://gcp-public-data-arco-era5/ar/full_37-1h-0p25deg-chunk-1.zarr-v3/evaporation/.zarray', proj='EPSG:4326', axis=0, starts=[time_start], ends=[time_end], ) display(zarr_v2_array_images) m = geemap.Map() m.add_layer( zarr_v2_array_images, {'min': -0.0001, 'max': 0.00005}, 'Evaporation' ) m