Informationen und Metadaten zu FeatureCollection

Die Methoden zum Abrufen von Informationen aus den Metadaten von Elementensammlungen sind dieselben wie für Bildsammlungen. Weitere Informationen finden Sie im Abschnitt Informationen und Metadaten zu Bildsammlungen.

Metadatenaggregation

Mit den Aggregationskürzeln können Sie die Anzahl der Elemente zählen oder ein Attribut zusammenfassen:

Code-Editor (JavaScript)

// Load watersheds from a data table.
var sheds = ee.FeatureCollection('USGS/WBD/2017/HUC06')
  // Filter to the continental US.
  .filterBounds(ee.Geometry.Rectangle(-127.18, 19.39, -62.75, 51.29))
  // Convert 'areasqkm' property from string to number.
  .map(function(feature){
    var num = ee.Number.parse(feature.get('areasqkm'));
    return feature.set('areasqkm', num);
  });

// Display the table and print its first element.
Map.addLayer(sheds, {}, 'watersheds');
print('First watershed', sheds.first());

// Print the number of watersheds.
print('Count:', sheds.size());

// Print stats for an area property.
print('Area stats:', sheds.aggregate_stats('areasqkm'));

Python einrichten

Auf der Seite Python-Umgebung finden Sie Informationen zur Python API und zur Verwendung von geemap für die interaktive Entwicklung.

import ee
import geemap.core as geemap

Colab (Python)

# Load watersheds from a data table.
sheds = (
    ee.FeatureCollection('USGS/WBD/2017/HUC06')
    # Filter to the continental US.
    .filterBounds(ee.Geometry.Rectangle(-127.18, 19.39, -62.75, 51.29))
    # Convert 'areasqkm' property from string to number.
    .map(
        lambda feature: feature.set(
            'areasqkm', ee.Number.parse(feature.get('areasqkm'))
        )
    )
)

# Display the table and print its first element.
m = geemap.Map()
m.add_layer(sheds, {}, 'watersheds')
display(m)
display('First watershed:', sheds.first())

# Print the number of watersheds.
display('Count:', sheds.size())

# Print stats for an area property.
display('Area stats:', sheds.aggregate_stats('areasqkm'))

Spalteninformationen

Die Namen und Datentypen von FeatureCollection-Spalten können hilfreich sein, z.B. wenn du eine Sammlung nach Metadaten filtern möchtest. Im folgenden Beispiel werden Spaltennamen und Datentypen für eine Sammlung von Punktelementen ausgegeben, die Schutzgebiete darstellen.

Code-Editor (JavaScript)

// Import a protected areas point feature collection.
var wdpa = ee.FeatureCollection("WCMC/WDPA/current/points");

// Define a function to print metadata column names and datatypes. This function
// is intended to be applied by the `evaluate` method which provides the
// function a client-side dictionary allowing the 'columns' object of the
// feature collection metadata to be subset by dot notation or bracket notation
// (`tableMetadata['columns']`).
function getCols(tableMetadata) {
  print(tableMetadata.columns);
}

// Fetch collection metadata (`.limit(0)`) and apply the
// previously defined function using `evaluate()`. The printed object is a
// dictionary where keys are column names and values are datatypes.
wdpa.limit(0).evaluate(getCols);

Python einrichten

Auf der Seite Python-Umgebung finden Sie Informationen zur Python API und zur Verwendung von geemap für die interaktive Entwicklung.

import ee
import geemap.core as geemap

Colab (Python)

# Import a protected areas point feature collection.
wdpa = ee.FeatureCollection('WCMC/WDPA/current/points')

# Fetch collection metadata (`.limit(0)`). The printed object is a
# dictionary where keys are column names and values are datatypes.
wdpa.limit(0).getInfo()['columns']

Weitere allgemeine FeatureCollection-Aggregationstools finden Sie auf der Seite FeatureCollection reduzieren.