Earth Engine, ऐरे ट्रांसफ़ॉर्मेशन के साथ काम करता है. जैसे, ट्रांसपोज़, इनवर्स, और स्यूडो-इनवर्स. उदाहरण के लिए, इमेज की टाइम सीरीज़ के लिए ऑर्डिनरी लीस्ट स्क्वेयर (ओएलएस) रेग्रेसन का इस्तेमाल करें. यहां दिए गए उदाहरण में, अनुमान लगाने वाले एलिमेंट और रिस्पॉन्स वाली इमेज को ऐरे इमेज में बदला गया है. इसके बाद, कम से कम स्क्वेयर्स के अनुमान को तीन तरीकों से पाने के लिए, इमेज को “हल” किया गया है. सबसे पहले, इमेज डेटा इकट्ठा करें और उसे ऐरे में बदलें:
कोड एडिटर (JavaScript)
// Scales and masks Landsat 8 surface reflectance images. function prepSrL8(image) { // Develop masks for unwanted pixels (fill, cloud, cloud shadow). var qaMask = image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 2)).eq(0); var saturationMask = image.select('QA_RADSAT').eq(0); // Apply the scaling factors to the appropriate bands. var opticalBands = image.select('SR_B.').multiply(0.0000275).add(-0.2); var thermalBands = image.select('ST_B.*').multiply(0.00341802).add(149.0); // Replace the original bands with the scaled ones and apply the masks. return image.addBands(opticalBands, null, true) .addBands(thermalBands, null, true) .updateMask(qaMask) .updateMask(saturationMask); } // Load a Landsat 8 surface reflectance image collection. var collection = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2') // Filter to get only two years of data. .filterDate('2019-04-01', '2021-04-01') // Filter to get only imagery at a point of interest. .filterBounds(ee.Geometry.Point(-122.08709, 36.9732)) // Prepare images by mapping the prepSrL8 function over the collection. .map(prepSrL8) // Select NIR and red bands only. .select(['SR_B5', 'SR_B4']) // Sort the collection in chronological order. .sort('system:time_start', true); // This function computes the predictors and the response from the input. var makeVariables = function(image) { // Compute time of the image in fractional years relative to the Epoch. var year = ee.Image(image.date().difference(ee.Date('1970-01-01'), 'year')); // Compute the season in radians, one cycle per year. var season = year.multiply(2 * Math.PI); // Return an image of the predictors followed by the response. return image.select() .addBands(ee.Image(1)) // 0. constant .addBands(year.rename('t')) // 1. linear trend .addBands(season.sin().rename('sin')) // 2. seasonal .addBands(season.cos().rename('cos')) // 3. seasonal .addBands(image.normalizedDifference().rename('NDVI')) // 4. response .toFloat(); }; // Define the axes of variation in the collection array. var imageAxis = 0; var bandAxis = 1; // Convert the collection to an array. var array = collection.map(makeVariables).toArray(); // Check the length of the image axis (number of images). var arrayLength = array.arrayLength(imageAxis); // Update the mask to ensure that the number of images is greater than or // equal to the number of predictors (the linear model is solvable). array = array.updateMask(arrayLength.gt(4)); // Get slices of the array according to positions along the band axis. var predictors = array.arraySlice(bandAxis, 0, 4); var response = array.arraySlice(bandAxis, 4);
import ee import geemap.core as geemap
Colab (Python)
import math # Scales and masks Landsat 8 surface reflectance images. def prep_sr_l8(image): # Develop masks for unwanted pixels (fill, cloud, cloud shadow). qa_mask = image.select('QA_PIXEL').bitwiseAnd(int('11111', 2)).eq(0) saturation_mask = image.select('QA_RADSAT').eq(0) # Apply the scaling factors to the appropriate bands. optical_bands = image.select('SR_B.').multiply(0.0000275).add(-0.2) thermal_bands = image.select('ST_B.*').multiply(0.00341802).add(149.0) # Replace the original bands with the scaled ones and apply the masks. return ( image.addBands(optical_bands, None, True) .addBands(thermal_bands, None, True) .updateMask(qa_mask) .updateMask(saturation_mask) ) # Load a Landsat 8 surface reflectance image collection. collection = ( ee.ImageCollection('LANDSAT/LC08/C02/T1_L2') # Filter to get only two years of data. .filterDate('2019-04-01', '2021-04-01') # Filter to get only imagery at a point of interest. .filterBounds(ee.Geometry.Point(-122.08709, 36.9732)) # Prepare images by mapping the prep_sr_l8 function over the collection. .map(prep_sr_l8) # Select NIR and red bands only. .select(['SR_B5', 'SR_B4']) # Sort the collection in chronological order. .sort('system:time_start', True) ) # This function computes the predictors and the response from the input. def make_variables(image): # Compute time of the image in fractional years relative to the Epoch. year = ee.Image(image.date().difference(ee.Date('1970-01-01'), 'year')) # Compute the season in radians, one cycle per year. season = year.multiply(2 * math.pi) # Return an image of the predictors followed by the response. return ( image.select() .addBands(ee.Image(1)) # 0. constant .addBands(year.rename('t')) # 1. linear trend .addBands(season.sin().rename('sin')) # 2. seasonal .addBands(season.cos().rename('cos')) # 3. seasonal .addBands(image.normalizedDifference().rename('NDVI')) # 4. response .toFloat() ) # Define the axes of variation in the collection array. image_axis = 0 band_axis = 1 # Convert the collection to an array. array = collection.map(make_variables).toArray() # Check the length of the image axis (number of images). array_length = array.arrayLength(image_axis) # Update the mask to ensure that the number of images is greater than or # equal to the number of predictors (the linear model is solvable). array = array.updateMask(array_length.gt(4)) # Get slices of the array according to positions along the band axis. predictors = array.arraySlice(band_axis, 0, 4) response = array.arraySlice(band_axis, 4)
ध्यान दें कि arraySlice()
, bandAxis
(1-ऐक्सिस) के साथ बताए गए इंडेक्स की रेंज के लिए, टाइम सीरीज़ में सभी इमेज दिखाता है. इस बिंदु पर,
ओएलएस कोएफ़िशिएंट को हल करने के लिए मैट्रिक ऐल्जेब्रा का इस्तेमाल किया जा सकता है:
कोड एडिटर (JavaScript)
// Compute coefficients the hard way. var coefficients1 = predictors.arrayTranspose().matrixMultiply(predictors) .matrixInverse().matrixMultiply(predictors.arrayTranspose()) .matrixMultiply(response);
import ee import geemap.core as geemap
Colab (Python)
# Compute coefficients the hard way. coefficients_1 = ( predictors.arrayTranspose() .matrixMultiply(predictors) .matrixInverse() .matrixMultiply(predictors.arrayTranspose()) .matrixMultiply(response) )
हालांकि, यह तरीका काम करता है, लेकिन यह असरदार नहीं है. साथ ही, इससे कोड को पढ़ना मुश्किल हो जाता है. pseudoInverse()
तरीके का इस्तेमाल करना बेहतर होता है (matrixPseudoInverse()
, ऐरे इमेज के लिए):
कोड एडिटर (JavaScript)
// Compute coefficients the easy way. var coefficients2 = predictors.matrixPseudoInverse() .matrixMultiply(response);
import ee import geemap.core as geemap
Colab (Python)
# Compute coefficients the easy way. coefficients_2 = predictors.matrixPseudoInverse().matrixMultiply(response)
पढ़ने और कैलकुलेशन के लिहाज़ से, OLS के कोएफ़िशिएंट पाने का सबसे अच्छा तरीका solve()
(ऐरे इमेज के लिए matrixSolve()
) है. solve()
फ़ंक्शन, इनपुट की विशेषताओं के आधार पर सिस्टम को हल करने का सबसे सही तरीका तय करता है. इसके लिए, यह ओवरडिटरमाइंडेड सिस्टम के लिए स्यूडो-इनवर्स, स्क्वेयर मैट्रिक्स के लिए इनवर्स, और लगभग सिंगल्यूलर मैट्रिक्स के लिए खास तकनीकों का इस्तेमाल करता है:
कोड एडिटर (JavaScript)
// Compute coefficients the easiest way. var coefficients3 = predictors.matrixSolve(response);
import ee import geemap.core as geemap
Colab (Python)
# Compute coefficients the easiest way. coefficients_3 = predictors.matrixSolve(response)
मल्टी-बैंड इमेज पाने के लिए, ऐरे इमेज को कम डाइमेंशन वाले स्पेस में प्रोजेक्ट करें. इसके बाद, उसे फ़्लैट करें:
कोड एडिटर (JavaScript)
// Turn the results into a multi-band image. var coefficientsImage = coefficients3 // Get rid of the extra dimensions. .arrayProject([0]) .arrayFlatten([ ['constant', 'trend', 'sin', 'cos'] ]);
import ee import geemap.core as geemap
Colab (Python)
# Turn the results into a multi-band image. coefficients_image = ( coefficients_3 # Get rid of the extra dimensions. .arrayProject([0]).arrayFlatten([['constant', 'trend', 'sin', 'cos']]) )
तीनों तरीकों के आउटपुट की जांच करें और देखें कि हल करने वाले के बावजूद, गुणांकों की रिज़ल्ट मैट्रिक एक ही है. solve()
का इस्तेमाल करना आसान है और यह कारगर भी है. इसलिए, सामान्य मकसद के लिए लीनियर मॉडलिंग के लिए, यह एक अच्छा विकल्प है.