# The Knapsack Problem

In the knapsack problem, you need to pack a set of items, with given values and sizes (such as weights or volumes), into a container with a maximum capacity . If the total size of the items exceeds the capacity, you can't pack them all. In that case, the problem is to choose a subset of the items of maximum total value that will fit in the container.

The following sections show how to solve a knapsack problem using OR-Tools.

## Example

Here's a graphical depiction of a knapsack problem:

In the above animation, `50` items are packed into a bin. Each item has a value (the number on the item) and a weight (roughly proportional to the area of the item). The bin is declared to have a capacity of `850`, and our goal is to find the set of items that will maximize the total value without exceeding the capacity.

The following sections describe programs that solve a knapsack problem. For the full programs, see Complete programs.

### Import the libraries

The following code imports the required libraries.

### Python

`from ortools.algorithms.python import knapsack_solver`

### C++

```#include <algorithm>
#include <cstdint>
#include <iterator>
#include <numeric>
#include <sstream>
#include <vector>

#include "ortools/algorithms/knapsack_solver.h"```

### Java

```import com.google.ortools.Loader;
import com.google.ortools.algorithms.KnapsackSolver;
import java.util.ArrayList;```

### C#

```using System;
using Google.OrTools.Algorithms;```

### Create the data

The code below creates the data for the problem.

### Python

```values = [
# fmt:off
360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147,
78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28,
87, 73, 78, 15, 26, 78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276,
312
# fmt:on
]
weights = [
# fmt: off
[7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9, 0,
42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71,
3, 86, 66, 31, 65, 0, 79, 20, 65, 52, 13],
# fmt: on
]
capacities = [850]```

### C++

```std::vector<int64_t> values = {
360, 83, 59,  130, 431, 67, 230, 52,  93,  125, 670, 892, 600,
38,  48, 147, 78,  256, 63, 17,  120, 164, 432, 35,  92,  110,
22,  42, 50,  323, 514, 28, 87,  73,  78,  15,  26,  78,  210,
36,  85, 189, 274, 43,  33, 10,  19,  389, 276, 312};

std::vector<std::vector<int64_t>> weights = {
{7,  0,  30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0,  36, 3,  8,  15,
42, 9,  0,  42, 47, 52, 32, 26, 48, 55, 6,  29, 84, 2,  4,  18, 56,
7,  29, 93, 44, 71, 3,  86, 66, 31, 65, 0,  79, 20, 65, 52, 13}};

std::vector<int64_t> capacities = {850};```

### Java

```final long[] values = {360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147,
78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28, 87, 73, 78, 15, 26,
78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276, 312};

final long[][] weights = {{7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9,
0, 42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71, 3, 86, 66, 31,
65, 0, 79, 20, 65, 52, 13}};

final long[] capacities = {850};```

### C#

```long[] values = { 360, 83, 59, 130, 431, 67,  230, 52,  93,  125, 670, 892, 600, 38,  48,  147, 78,
256, 63, 17, 120, 164, 432, 35,  92,  110, 22,  42,  50,  323, 514, 28,  87,  73,
78,  15, 26, 78,  210, 36,  85,  189, 274, 43,  33,  10,  19,  389, 276, 312 };

long[,] weights = { { 7,  0,  30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0,  36, 3,  8,  15,
42, 9,  0,  42, 47, 52, 32, 26, 48, 55, 6,  29, 84, 2,  4,  18, 56,
7,  29, 93, 44, 71, 3,  86, 66, 31, 65, 0,  79, 20, 65, 52, 13 } };

long[] capacities = { 850 };```

The data includes the following:

• `weights`: A vector containing the weights of the items.
• `values`: A vector containing the values of the items.
• `capacities`: A vector with just one entry, the capacity of the knapsack.

### Declare the solver

The following code declares the knapsack solver, a specialized solver for knapsack problems.

### Python

```solver = knapsack_solver.KnapsackSolver(
knapsack_solver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER,
"KnapsackExample",
)```

### C++

```KnapsackSolver solver(
KnapsackSolver::KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER,
"KnapsackExample");```

### Java

```KnapsackSolver solver = new KnapsackSolver(
KnapsackSolver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, "test");```

### C#

```KnapsackSolver solver = new KnapsackSolver(
KnapsackSolver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, "KnapsackExample");```

The option `KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER` tells the solver to use the branch and bound algorithm to solve the problem.

### Call the solver

The following code calls the solver and prints the solution.

### Python

```solver.init(values, weights, capacities)
computed_value = solver.solve()
packed_items = []
packed_weights = []
total_weight = 0
print("Total value =", computed_value)
for i in range(len(values)):
if solver.best_solution_contains(i):
packed_items.append(i)
packed_weights.append(weights[0][i])
total_weight += weights[0][i]
print("Total weight:", total_weight)
print("Packed items:", packed_items)
print("Packed_weights:", packed_weights)```

### C++

```solver.Init(values, weights, capacities);
int64_t computed_value = solver.Solve();
std::vector<int> packed_items;
for (std::size_t i = 0; i < values.size(); ++i) {
if (solver.BestSolutionContains(i)) packed_items.push_back(i);
}
std::ostringstream packed_items_ss;
std::copy(packed_items.begin(), packed_items.end() - 1,
std::ostream_iterator<int>(packed_items_ss, ", "));
packed_items_ss << packed_items.back();

std::vector<int64_t> packed_weights;
packed_weights.reserve(packed_items.size());
for (const auto& it : packed_items) {
packed_weights.push_back(weights[0][it]);
}
std::ostringstream packed_weights_ss;
std::copy(packed_weights.begin(), packed_weights.end() - 1,
std::ostream_iterator<int>(packed_weights_ss, ", "));
packed_weights_ss << packed_weights.back();

int64_t total_weights =
std::accumulate(packed_weights.begin(), packed_weights.end(), int64_t{0});

LOG(INFO) << "Total value: " << computed_value;
LOG(INFO) << "Packed items: {" << packed_items_ss.str() << "}";
LOG(INFO) << "Total weight: " << total_weights;
LOG(INFO) << "Packed weights: {" << packed_weights_ss.str() << "}";```

### Java

```solver.init(values, weights, capacities);
final long computedValue = solver.solve();
ArrayList<Integer> packedItems = new ArrayList<>();
ArrayList<Long> packedWeights = new ArrayList<>();
int totalWeight = 0;
System.out.println("Total value = " + computedValue);
for (int i = 0; i < values.length; i++) {
if (solver.bestSolutionContains(i)) {
packedItems.add(i);
packedWeights.add(weights[0][i]);
totalWeight = (int) (totalWeight + weights[0][i]);
}
}
System.out.println("Total weight: " + totalWeight);
System.out.println("Packed items: " + packedItems);
System.out.println("Packed weights: " + packedWeights);```

### C#

```solver.Init(values, weights, capacities);
long computedValue = solver.Solve();
Console.WriteLine("Optimal Value = " + computedValue);```

The program first initializes the solver, and then calls it by `computed_value = solver.Solve()`. The total value of the optimal solution is `computed_value`, which is the same as the total weight in this case. The program then gets the indices of the packed items in the solution as follows:

```packed_items = [x for x in range(0, len(weights[0]))
if solver.BestSolutionContains(x)]```
Since `solver.BestSolutionContains(x)` returns `TRUE` if the item x is included in the solution, `packed_items` is a list of the optimal packed items. Similarly, `packed_weights` are the weights of the packed items. ### Output of the program Here is the output of the program.
```Total value = 7534
Total weight: 850
Packed items: [0, 1, 3, 4, 6, 10, 11, 12, 14, 15, 16, 17, 18, 19, 21, 22, 24, 27, 28, 29, 30, 31,
32, 34, 38, 39, 41, 42, 44, 47, 48, 49]
Packed_weights: [7, 0, 22, 80, 11, 59, 18, 0, 3, 8, 15, 42, 9, 0, 47, 52, 26, 6, 29, 84, 2, 4,
18, 7, 71, 3, 66, 31, 0, 65, 52, 13]
```

### Complete programs

Below are the complete programs that solve the knapsack problem.

### Python

```from ortools.algorithms.python import knapsack_solver

def main():
# Create the solver.
solver = knapsack_solver.KnapsackSolver(
knapsack_solver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER,
"KnapsackExample",
)

values = [
# fmt:off
360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147,
78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28,
87, 73, 78, 15, 26, 78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276,
312
# fmt:on
]
weights = [
# fmt: off
[7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9, 0,
42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71,
3, 86, 66, 31, 65, 0, 79, 20, 65, 52, 13],
# fmt: on
]
capacities = [850]

solver.init(values, weights, capacities)
computed_value = solver.solve()

packed_items = []
packed_weights = []
total_weight = 0
print("Total value =", computed_value)
for i in range(len(values)):
if solver.best_solution_contains(i):
packed_items.append(i)
packed_weights.append(weights[0][i])
total_weight += weights[0][i]
print("Total weight:", total_weight)
print("Packed items:", packed_items)
print("Packed_weights:", packed_weights)

if __name__ == "__main__":
main()```

### C++

```#include <algorithm>
#include <cstdint>
#include <iterator>
#include <numeric>
#include <sstream>
#include <vector>

#include "ortools/algorithms/knapsack_solver.h"

namespace operations_research {
void RunKnapsackExample() {
// Instantiate the solver.
KnapsackSolver solver(
KnapsackSolver::KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER,
"KnapsackExample");

std::vector<int64_t> values = {
360, 83, 59,  130, 431, 67, 230, 52,  93,  125, 670, 892, 600,
38,  48, 147, 78,  256, 63, 17,  120, 164, 432, 35,  92,  110,
22,  42, 50,  323, 514, 28, 87,  73,  78,  15,  26,  78,  210,
36,  85, 189, 274, 43,  33, 10,  19,  389, 276, 312};

std::vector<std::vector<int64_t>> weights = {
{7,  0,  30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0,  36, 3,  8,  15,
42, 9,  0,  42, 47, 52, 32, 26, 48, 55, 6,  29, 84, 2,  4,  18, 56,
7,  29, 93, 44, 71, 3,  86, 66, 31, 65, 0,  79, 20, 65, 52, 13}};

std::vector<int64_t> capacities = {850};

solver.Init(values, weights, capacities);
int64_t computed_value = solver.Solve();

// Print solution
std::vector<int> packed_items;
for (std::size_t i = 0; i < values.size(); ++i) {
if (solver.BestSolutionContains(i)) packed_items.push_back(i);
}
std::ostringstream packed_items_ss;
std::copy(packed_items.begin(), packed_items.end() - 1,
std::ostream_iterator<int>(packed_items_ss, ", "));
packed_items_ss << packed_items.back();

std::vector<int64_t> packed_weights;
packed_weights.reserve(packed_items.size());
for (const auto& it : packed_items) {
packed_weights.push_back(weights[0][it]);
}
std::ostringstream packed_weights_ss;
std::copy(packed_weights.begin(), packed_weights.end() - 1,
std::ostream_iterator<int>(packed_weights_ss, ", "));
packed_weights_ss << packed_weights.back();

int64_t total_weights =
std::accumulate(packed_weights.begin(), packed_weights.end(), int64_t{0});

LOG(INFO) << "Total value: " << computed_value;
LOG(INFO) << "Packed items: {" << packed_items_ss.str() << "}";
LOG(INFO) << "Total weight: " << total_weights;
LOG(INFO) << "Packed weights: {" << packed_weights_ss.str() << "}";
}
}  // namespace operations_research

int main(int argc, char** argv) {
operations_research::RunKnapsackExample();
return EXIT_SUCCESS;
}```

### Java

```package com.google.ortools.algorithms.samples;
import com.google.ortools.Loader;
import com.google.ortools.algorithms.KnapsackSolver;
import java.util.ArrayList;

/**
* Sample showing how to model using the knapsack solver.
*/
public class Knapsack {
private Knapsack() {}

private static void solve() {
KnapsackSolver solver = new KnapsackSolver(
KnapsackSolver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, "test");

final long[] values = {360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147,
78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28, 87, 73, 78, 15, 26,
78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276, 312};

final long[][] weights = {{7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9,
0, 42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71, 3, 86, 66, 31,
65, 0, 79, 20, 65, 52, 13}};

final long[] capacities = {850};

solver.init(values, weights, capacities);
final long computedValue = solver.solve();

ArrayList<Integer> packedItems = new ArrayList<>();
ArrayList<Long> packedWeights = new ArrayList<>();
int totalWeight = 0;
System.out.println("Total value = " + computedValue);
for (int i = 0; i < values.length; i++) {
if (solver.bestSolutionContains(i)) {
packedItems.add(i);
packedWeights.add(weights[0][i]);
totalWeight = (int) (totalWeight + weights[0][i]);
}
}
System.out.println("Total weight: " + totalWeight);
System.out.println("Packed items: " + packedItems);
System.out.println("Packed weights: " + packedWeights);
}

public static void main(String[] args) throws Exception {
Loader.loadNativeLibraries();
Knapsack.solve();
}
}```

### C#

```using System;
using Google.OrTools.Algorithms;

public class Knapsack
{
static void Main()
{
KnapsackSolver solver = new KnapsackSolver(
KnapsackSolver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, "KnapsackExample");

long[] values = { 360, 83, 59, 130, 431, 67,  230, 52,  93,  125, 670, 892, 600, 38,  48,  147, 78,
256, 63, 17, 120, 164, 432, 35,  92,  110, 22,  42,  50,  323, 514, 28,  87,  73,
78,  15, 26, 78,  210, 36,  85,  189, 274, 43,  33,  10,  19,  389, 276, 312 };

long[,] weights = { { 7,  0,  30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0,  36, 3,  8,  15,
42, 9,  0,  42, 47, 52, 32, 26, 48, 55, 6,  29, 84, 2,  4,  18, 56,
7,  29, 93, 44, 71, 3,  86, 66, 31, 65, 0,  79, 20, 65, 52, 13 } };

long[] capacities = { 850 };

solver.Init(values, weights, capacities);
long computedValue = solver.Solve();

Console.WriteLine("Optimal Value = " + computedValue);
}
}```
[{ "type": "thumb-down", "id": "missingTheInformationINeed", "label":"Missing the information I need" },{ "type": "thumb-down", "id": "tooComplicatedTooManySteps", "label":"Too complicated / too many steps" },{ "type": "thumb-down", "id": "outOfDate", "label":"Out of date" },{ "type": "thumb-down", "id": "samplesCodeIssue", "label":"Samples / code issue" },{ "type": "thumb-down", "id": "otherDown", "label":"Other" }]
[{ "type": "thumb-up", "id": "easyToUnderstand", "label":"Easy to understand" },{ "type": "thumb-up", "id": "solvedMyProblem", "label":"Solved my problem" },{ "type": "thumb-up", "id": "otherUp", "label":"Other" }]