Assignment with Allowed Groups

This section describes an assignment problem in which only certain allowed groups of workers can be assigned to the tasks. In the example there are twelve workers, numbered 0 - 11. The allowed groups are combinations of the following pairs of workers.

  group1 =  [[2, 3],       # Subgroups of workers 0 - 3
             [1, 3],
             [1, 2],
             [0, 1],
             [0, 2]]

  group2 =  [[6, 7],       # Subgroups of workers 4 - 7
             [5, 7],
             [5, 6],
             [4, 5],
             [4, 7]]

  group3 =  [[10, 11],     # Subgroups of workers 8 - 11
             [9, 11],
             [9, 10],
             [8, 10],
             [8, 11]]

An allowed group can be any combination of three pairs of workers, one pair from each of group1, group2, and group3. For example, combining [2, 3], [6, 7], and [10, 11] results in the allowed group [2, 3, 6, 7, 10, 11]. Since each of the three sets contains five elements, the total number of allowed groups is 5 * 5 * 5 = 125.

Note that a group of workers can be a solution to the problem if it belongs to any one of the allowed groups. In other words, the feasible set consists of points for which any one of the constraints is satisfied. This is an example of a non-convex problem. By contrast, the MIP Example, described previously, is a convex problem: for a point to be feasible, all constraints must be satisfied.

For non-convex problems like this one, the CP-SAT solver is usually faster than a MIP solver. The following sections present solutions to the problem using the CP-SAT solver and the MIP solver, and compare the solution times for the two solvers.

CP-SAT solution

First, we'll describe a solution to the problem using the CP-SAT solver.

Import the libraries

The following code imports the required library.

Python

from ortools.sat.python import cp_model

C++

#include <stdlib.h>

#include <cstdint>
#include <numeric>
#include <vector>

#include "absl/strings/str_format.h"
#include "absl/types/span.h"
#include "ortools/base/logging.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"

Java

import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverStatus;
import com.google.ortools.sat.IntVar;
import com.google.ortools.sat.LinearExpr;
import com.google.ortools.sat.LinearExprBuilder;
import com.google.ortools.sat.Literal;
import java.util.ArrayList;
import java.util.List;
import java.util.stream.IntStream;

C#

using System;
using System.Collections.Generic;
using System.Linq;
using Google.OrTools.Sat;

Define the data

The following code creates the data for the program.

Python

costs = [
    [90, 76, 75, 70, 50, 74],
    [35, 85, 55, 65, 48, 101],
    [125, 95, 90, 105, 59, 120],
    [45, 110, 95, 115, 104, 83],
    [60, 105, 80, 75, 59, 62],
    [45, 65, 110, 95, 47, 31],
    [38, 51, 107, 41, 69, 99],
    [47, 85, 57, 71, 92, 77],
    [39, 63, 97, 49, 118, 56],
    [47, 101, 71, 60, 88, 109],
    [17, 39, 103, 64, 61, 92],
    [101, 45, 83, 59, 92, 27],
]
num_workers = len(costs)
num_tasks = len(costs[0])

C++

const std::vector<std::vector<int>> costs = {{
    {{90, 76, 75, 70, 50, 74}},
    {{35, 85, 55, 65, 48, 101}},
    {{125, 95, 90, 105, 59, 120}},
    {{45, 110, 95, 115, 104, 83}},
    {{60, 105, 80, 75, 59, 62}},
    {{45, 65, 110, 95, 47, 31}},
    {{38, 51, 107, 41, 69, 99}},
    {{47, 85, 57, 71, 92, 77}},
    {{39, 63, 97, 49, 118, 56}},
    {{47, 101, 71, 60, 88, 109}},
    {{17, 39, 103, 64, 61, 92}},
    {{101, 45, 83, 59, 92, 27}},
}};
const int num_workers = static_cast<int>(costs.size());
std::vector<int> all_workers(num_workers);
std::iota(all_workers.begin(), all_workers.end(), 0);

const int num_tasks = static_cast<int>(costs[0].size());
std::vector<int> all_tasks(num_tasks);
std::iota(all_tasks.begin(), all_tasks.end(), 0);

Java

int[][] costs = {
    {90, 76, 75, 70, 50, 74},
    {35, 85, 55, 65, 48, 101},
    {125, 95, 90, 105, 59, 120},
    {45, 110, 95, 115, 104, 83},
    {60, 105, 80, 75, 59, 62},
    {45, 65, 110, 95, 47, 31},
    {38, 51, 107, 41, 69, 99},
    {47, 85, 57, 71, 92, 77},
    {39, 63, 97, 49, 118, 56},
    {47, 101, 71, 60, 88, 109},
    {17, 39, 103, 64, 61, 92},
    {101, 45, 83, 59, 92, 27},
};
final int numWorkers = costs.length;
final int numTasks = costs[0].length;

final int[] allWorkers = IntStream.range(0, numWorkers).toArray();
final int[] allTasks = IntStream.range(0, numTasks).toArray();

C#

int[,] costs = {
    { 90, 76, 75, 70, 50, 74 },    { 35, 85, 55, 65, 48, 101 }, { 125, 95, 90, 105, 59, 120 },
    { 45, 110, 95, 115, 104, 83 }, { 60, 105, 80, 75, 59, 62 }, { 45, 65, 110, 95, 47, 31 },
    { 38, 51, 107, 41, 69, 99 },   { 47, 85, 57, 71, 92, 77 },  { 39, 63, 97, 49, 118, 56 },
    { 47, 101, 71, 60, 88, 109 },  { 17, 39, 103, 64, 61, 92 }, { 101, 45, 83, 59, 92, 27 },
};
int numWorkers = costs.GetLength(0);
int numTasks = costs.GetLength(1);

int[] allWorkers = Enumerable.Range(0, numWorkers).ToArray();
int[] allTasks = Enumerable.Range(0, numTasks).ToArray();

Create the allowed groups

To define the allowed groups of workers for the CP-SAT solver, you create binary arrays that indicate which workers belong to a group. For example, for group1 (workers 0 - 3), the binary vector [0, 0, 1, 1] specifies the group containing workers 2 and 3.

Note: This way specifying the groups is slightly different from how they are specified in the MIP solution, but it amounts to the same thing.

The following arrays define the allowed groups of workers.

Python

group1 = [
    [0, 0, 1, 1],  # Workers 2, 3
    [0, 1, 0, 1],  # Workers 1, 3
    [0, 1, 1, 0],  # Workers 1, 2
    [1, 1, 0, 0],  # Workers 0, 1
    [1, 0, 1, 0],  # Workers 0, 2
]

group2 = [
    [0, 0, 1, 1],  # Workers 6, 7
    [0, 1, 0, 1],  # Workers 5, 7
    [0, 1, 1, 0],  # Workers 5, 6
    [1, 1, 0, 0],  # Workers 4, 5
    [1, 0, 0, 1],  # Workers 4, 7
]

group3 = [
    [0, 0, 1, 1],  # Workers 10, 11
    [0, 1, 0, 1],  # Workers 9, 11
    [0, 1, 1, 0],  # Workers 9, 10
    [1, 0, 1, 0],  # Workers 8, 10
    [1, 0, 0, 1],  # Workers 8, 11
]

C++

const std::vector<std::vector<int64_t>> group1 = {{
    {{0, 0, 1, 1}},  // Workers 2, 3
    {{0, 1, 0, 1}},  // Workers 1, 3
    {{0, 1, 1, 0}},  // Workers 1, 2
    {{1, 1, 0, 0}},  // Workers 0, 1
    {{1, 0, 1, 0}},  // Workers 0, 2
}};

const std::vector<std::vector<int64_t>> group2 = {{
    {{0, 0, 1, 1}},  // Workers 6, 7
    {{0, 1, 0, 1}},  // Workers 5, 7
    {{0, 1, 1, 0}},  // Workers 5, 6
    {{1, 1, 0, 0}},  // Workers 4, 5
    {{1, 0, 0, 1}},  // Workers 4, 7
}};

const std::vector<std::vector<int64_t>> group3 = {{
    {{0, 0, 1, 1}},  // Workers 10, 11
    {{0, 1, 0, 1}},  // Workers 9, 11
    {{0, 1, 1, 0}},  // Workers 9, 10
    {{1, 0, 1, 0}},  // Workers 8, 10
    {{1, 0, 0, 1}},  // Workers 8, 11
}};

Java

int[][] group1 = {
    {0, 0, 1, 1}, // Workers 2, 3
    {0, 1, 0, 1}, // Workers 1, 3
    {0, 1, 1, 0}, // Workers 1, 2
    {1, 1, 0, 0}, // Workers 0, 1
    {1, 0, 1, 0}, // Workers 0, 2
};

int[][] group2 = {
    {0, 0, 1, 1}, // Workers 6, 7
    {0, 1, 0, 1}, // Workers 5, 7
    {0, 1, 1, 0}, // Workers 5, 6
    {1, 1, 0, 0}, // Workers 4, 5
    {1, 0, 0, 1}, // Workers 4, 7
};

int[][] group3 = {
    {0, 0, 1, 1}, // Workers 10, 11
    {0, 1, 0, 1}, // Workers 9, 11
    {0, 1, 1, 0}, // Workers 9, 10
    {1, 0, 1, 0}, // Workers 8, 10
    {1, 0, 0, 1}, // Workers 8, 11
};

C#

long[,] group1 = {
    { 0, 0, 1, 1 }, // Workers 2, 3
    { 0, 1, 0, 1 }, // Workers 1, 3
    { 0, 1, 1, 0 }, // Workers 1, 2
    { 1, 1, 0, 0 }, // Workers 0, 1
    { 1, 0, 1, 0 }, // Workers 0, 2
};

long[,] group2 = {
    { 0, 0, 1, 1 }, // Workers 6, 7
    { 0, 1, 0, 1 }, // Workers 5, 7
    { 0, 1, 1, 0 }, // Workers 5, 6
    { 1, 1, 0, 0 }, // Workers 4, 5
    { 1, 0, 0, 1 }, // Workers 4, 7
};

long[,] group3 = {
    { 0, 0, 1, 1 }, // Workers 10, 11
    { 0, 1, 0, 1 }, // Workers 9, 11
    { 0, 1, 1, 0 }, // Workers 9, 10
    { 1, 0, 1, 0 }, // Workers 8, 10
    { 1, 0, 0, 1 }, // Workers 8, 11
};

For CP-SAT it is not necessary to create all 125 combinations of these vectors in a loop. The CP-SAT solver provides a method, AllowedAssignments, which enables you to specify the constraints for the allowed groups separately for each of the three sets of workers (0 - 3, 4 - 7, and 8 - 11). Here's how it works:

Python

# Create variables for each worker, indicating whether they work on some task.
work = {}
for worker in range(num_workers):
    work[worker] = model.NewBoolVar(f'work[{worker}]')

for worker in range(num_workers):
    for task in range(num_tasks):
        model.Add(work[worker] == sum(
            x[worker, task] for task in range(num_tasks)))

# Define the allowed groups of worders
model.AddAllowedAssignments([work[0], work[1], work[2], work[3]], group1)
model.AddAllowedAssignments([work[4], work[5], work[6], work[7]], group2)
model.AddAllowedAssignments([work[8], work[9], work[10], work[11]], group3)

C++

// Create variables for each worker, indicating whether they work on some
// task.
std::vector<IntVar> work(num_workers);
for (int worker : all_workers) {
  work[worker] = IntVar(
      cp_model.NewBoolVar().WithName(absl::StrFormat("work[%d]", worker)));
}

for (int worker : all_workers) {
  LinearExpr task_sum;
  for (int task : all_tasks) {
    task_sum += x[worker][task];
  }
  cp_model.AddEquality(work[worker], task_sum);
}

// Define the allowed groups of worders
auto table1 =
    cp_model.AddAllowedAssignments({work[0], work[1], work[2], work[3]});
for (const auto& t : group1) {
  table1.AddTuple(t);
}
auto table2 =
    cp_model.AddAllowedAssignments({work[4], work[5], work[6], work[7]});
for (const auto& t : group2) {
  table2.AddTuple(t);
}
auto table3 =
    cp_model.AddAllowedAssignments({work[8], work[9], work[10], work[11]});
for (const auto& t : group3) {
  table3.AddTuple(t);
}

Java

// Create variables for each worker, indicating whether they work on some task.
IntVar[] work = new IntVar[numWorkers];
for (int worker : allWorkers) {
  work[worker] = model.newBoolVar("work[" + worker + "]");
}

for (int worker : allWorkers) {
  LinearExprBuilder expr = LinearExpr.newBuilder();
  for (int task : allTasks) {
    expr.add(x[worker][task]);
  }
  model.addEquality(work[worker], expr);
}

// Define the allowed groups of worders
model.addAllowedAssignments(new IntVar[] {work[0], work[1], work[2], work[3]})
    .addTuples(group1);
model.addAllowedAssignments(new IntVar[] {work[4], work[5], work[6], work[7]})
    .addTuples(group2);
model.addAllowedAssignments(new IntVar[] {work[8], work[9], work[10], work[11]})
    .addTuples(group3);

C#

// Create variables for each worker, indicating whether they work on some task.
BoolVar[] work = new BoolVar[numWorkers];
foreach (int worker in allWorkers)
{
    work[worker] = model.NewBoolVar($"work[{worker}]");
}

foreach (int worker in allWorkers)
{
    List<ILiteral> tasks = new List<ILiteral>();
    foreach (int task in allTasks)
    {
        tasks.Add(x[worker, task]);
    }
    model.Add(work[worker] == LinearExpr.Sum(tasks));
}

// Define the allowed groups of worders
model.AddAllowedAssignments(new IntVar[] { work[0], work[1], work[2], work[3] }).AddTuples(group1);
model.AddAllowedAssignments(new IntVar[] { work[4], work[5], work[6], work[7] }).AddTuples(group2);
model.AddAllowedAssignments(new IntVar[] { work[8], work[9], work[10], work[11] }).AddTuples(group3);

The variables work[i] are 0-1 variables that indicate the work status or each worker. That is, work[i] equals 1 if worker i is assigned to a task, and 0 otherwise. The line solver.Add(solver.AllowedAssignments([work[0], work[1], work[2], work[3]], group1)) defines the constraint that the work status of workers 0 - 3 must match one of the patterns in group1. You can see the full details of the code in the next section.

Create the model

The following code creates the model.

Python

model = cp_model.CpModel()

C++

CpModelBuilder cp_model;

Java

CpModel model = new CpModel();

C#

CpModel model = new CpModel();

Create the variables

The following code creates an array of variables for the problem.

Python

x = {}
for worker in range(num_workers):
    for task in range(num_tasks):
        x[worker, task] = model.NewBoolVar(f'x[{worker},{task}]')

C++

// x[i][j] is an array of Boolean variables. x[i][j] is true
// if worker i is assigned to task j.
std::vector<std::vector<BoolVar>> x(num_workers,
                                    std::vector<BoolVar>(num_tasks));
for (int worker : all_workers) {
  for (int task : all_tasks) {
    x[worker][task] = cp_model.NewBoolVar().WithName(
        absl::StrFormat("x[%d,%d]", worker, task));
  }
}

Java

Literal[][] x = new Literal[numWorkers][numTasks];
for (int worker : allWorkers) {
  for (int task : allTasks) {
    x[worker][task] = model.newBoolVar("x[" + worker + "," + task + "]");
  }
}

C#

BoolVar[,] x = new BoolVar[numWorkers, numTasks];
// Variables in a 1-dim array.
foreach (int worker in allWorkers)
{
    foreach (int task in allTasks)
    {
        x[worker, task] = model.NewBoolVar($"x[{worker},{task}]");
    }
}

Add the constraints

The following code creates the constraints for the program.

Python

# Each worker is assigned to at most one task.
for worker in range(num_workers):
    model.AddAtMostOne(x[worker, task] for task in range(num_tasks))

# Each task is assigned to exactly one worker.
for task in range(num_tasks):
    model.AddExactlyOne(x[worker, task] for worker in range(num_workers))

C++

// Each worker is assigned to at most one task.
for (int worker : all_workers) {
  cp_model.AddAtMostOne(x[worker]);
}
// Each task is assigned to exactly one worker.
for (int task : all_tasks) {
  std::vector<BoolVar> tasks;
  for (int worker : all_workers) {
    tasks.push_back(x[worker][task]);
  }
  cp_model.AddExactlyOne(tasks);
}

Java

// Each worker is assigned to at most one task.
for (int worker : allWorkers) {
  List<Literal> tasks = new ArrayList<>();
  for (int task : allTasks) {
    tasks.add(x[worker][task]);
  }
  model.addAtMostOne(tasks);
}

// Each task is assigned to exactly one worker.
for (int task : allTasks) {
  List<Literal> workers = new ArrayList<>();
  for (int worker : allWorkers) {
    workers.add(x[worker][task]);
  }
  model.addExactlyOne(workers);
}

C#

// Each worker is assigned to at most one task.
foreach (int worker in allWorkers)
{
    List<ILiteral> tasks = new List<ILiteral>();
    foreach (int task in allTasks)
    {
        tasks.Add(x[worker, task]);
    }
    model.AddAtMostOne(tasks);
}

// Each task is assigned to exactly one worker.
foreach (int task in allTasks)
{
    List<ILiteral> workers = new List<ILiteral>();
    foreach (int worker in allWorkers)
    {
        workers.Add(x[worker, task]);
    }
    model.AddExactlyOne(workers);
}

Create the objective

The following code creates the objective function.

Python

objective_terms = []
for worker in range(num_workers):
    for task in range(num_tasks):
        objective_terms.append(costs[worker][task] * x[worker, task])
model.Minimize(sum(objective_terms))

C++

LinearExpr total_cost;
for (int worker : all_workers) {
  for (int task : all_tasks) {
    total_cost += x[worker][task] * costs[worker][task];
  }
}
cp_model.Minimize(total_cost);

Java

LinearExprBuilder obj = LinearExpr.newBuilder();
for (int worker : allWorkers) {
  for (int task : allTasks) {
    obj.addTerm(x[worker][task], costs[worker][task]);
  }
}
model.minimize(obj);

C#

LinearExprBuilder obj = LinearExpr.NewBuilder();
foreach (int worker in allWorkers)
{
    foreach (int task in allTasks)
    {
        obj.AddTerm(x[worker, task], costs[worker, task]);
    }
}
model.Minimize(obj);

Invoke the solver

The following code invokes the solver and displays the results.

Python

solver = cp_model.CpSolver()
status = solver.Solve(model)

C++

const CpSolverResponse response = Solve(cp_model.Build());

Java

CpSolver solver = new CpSolver();
CpSolverStatus status = solver.solve(model);

C#

CpSolver solver = new CpSolver();
CpSolverStatus status = solver.Solve(model);
Console.WriteLine($"Solve status: {status}");

Display the results

Now, we can print the solution.

Python

if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE:
    print(f'Total cost = {solver.ObjectiveValue()}\n')
    for worker in range(num_workers):
        for task in range(num_tasks):
            if solver.BooleanValue(x[worker, task]):
                print(f'Worker {worker} assigned to task {task}.' +
                      f' Cost = {costs[worker][task]}')
else:
    print('No solution found.')

C++

if (response.status() == CpSolverStatus::INFEASIBLE) {
  LOG(FATAL) << "No solution found.";
}
LOG(INFO) << "Total cost: " << response.objective_value();
LOG(INFO);
for (int worker : all_workers) {
  for (int task : all_tasks) {
    if (SolutionBooleanValue(response, x[worker][task])) {
      LOG(INFO) << "Worker " << worker << " assigned to task " << task
                << ".  Cost: " << costs[worker][task];
    }
  }
}

Java

// Check that the problem has a feasible solution.
if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) {
  System.out.println("Total cost: " + solver.objectiveValue() + "\n");
  for (int worker : allWorkers) {
    for (int task : allTasks) {
      if (solver.booleanValue(x[worker][task])) {
        System.out.println("Worker " + worker + " assigned to task " + task
            + ".  Cost: " + costs[worker][task]);
      }
    }
  }
} else {
  System.err.println("No solution found.");
}

C#

// Check that the problem has a feasible solution.
if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible)
{
    Console.WriteLine($"Total cost: {solver.ObjectiveValue}\n");
    foreach (int worker in allWorkers)
    {
        foreach (int task in allTasks)
        {
            if (solver.Value(x[worker, task]) > 0.5)
            {
                Console.WriteLine($"Worker {worker} assigned to task {task}. " +
                                  $"Cost: {costs[worker, task]}");
            }
        }
    }
}
else
{
    Console.WriteLine("No solution found.");
}

Here's the output of the program.

Minimum cost = 239

Worker  0  assigned to task  4   Cost =  50
Worker  1  assigned to task  2   Cost =  55
Worker  5  assigned to task  5   Cost =  31
Worker  6  assigned to task  3   Cost =  41
Worker  10  assigned to task  0   Cost =  17
Worker  11  assigned to task  1   Cost =  45

Time =  0.0113 seconds

The entire program

Here is the entire program.

Python

"""Solve assignment problem for given group of workers."""
from ortools.sat.python import cp_model


def main():
    # Data
    costs = [
        [90, 76, 75, 70, 50, 74],
        [35, 85, 55, 65, 48, 101],
        [125, 95, 90, 105, 59, 120],
        [45, 110, 95, 115, 104, 83],
        [60, 105, 80, 75, 59, 62],
        [45, 65, 110, 95, 47, 31],
        [38, 51, 107, 41, 69, 99],
        [47, 85, 57, 71, 92, 77],
        [39, 63, 97, 49, 118, 56],
        [47, 101, 71, 60, 88, 109],
        [17, 39, 103, 64, 61, 92],
        [101, 45, 83, 59, 92, 27],
    ]
    num_workers = len(costs)
    num_tasks = len(costs[0])

    # Allowed groups of workers:
    group1 = [
        [0, 0, 1, 1],  # Workers 2, 3
        [0, 1, 0, 1],  # Workers 1, 3
        [0, 1, 1, 0],  # Workers 1, 2
        [1, 1, 0, 0],  # Workers 0, 1
        [1, 0, 1, 0],  # Workers 0, 2
    ]

    group2 = [
        [0, 0, 1, 1],  # Workers 6, 7
        [0, 1, 0, 1],  # Workers 5, 7
        [0, 1, 1, 0],  # Workers 5, 6
        [1, 1, 0, 0],  # Workers 4, 5
        [1, 0, 0, 1],  # Workers 4, 7
    ]

    group3 = [
        [0, 0, 1, 1],  # Workers 10, 11
        [0, 1, 0, 1],  # Workers 9, 11
        [0, 1, 1, 0],  # Workers 9, 10
        [1, 0, 1, 0],  # Workers 8, 10
        [1, 0, 0, 1],  # Workers 8, 11
    ]

    # Model
    model = cp_model.CpModel()

    # Variables
    x = {}
    for worker in range(num_workers):
        for task in range(num_tasks):
            x[worker, task] = model.NewBoolVar(f'x[{worker},{task}]')

    # Constraints
    # Each worker is assigned to at most one task.
    for worker in range(num_workers):
        model.AddAtMostOne(x[worker, task] for task in range(num_tasks))

    # Each task is assigned to exactly one worker.
    for task in range(num_tasks):
        model.AddExactlyOne(x[worker, task] for worker in range(num_workers))

    # Create variables for each worker, indicating whether they work on some task.
    work = {}
    for worker in range(num_workers):
        work[worker] = model.NewBoolVar(f'work[{worker}]')

    for worker in range(num_workers):
        for task in range(num_tasks):
            model.Add(work[worker] == sum(
                x[worker, task] for task in range(num_tasks)))

    # Define the allowed groups of worders
    model.AddAllowedAssignments([work[0], work[1], work[2], work[3]], group1)
    model.AddAllowedAssignments([work[4], work[5], work[6], work[7]], group2)
    model.AddAllowedAssignments([work[8], work[9], work[10], work[11]], group3)

    # Objective
    objective_terms = []
    for worker in range(num_workers):
        for task in range(num_tasks):
            objective_terms.append(costs[worker][task] * x[worker, task])
    model.Minimize(sum(objective_terms))

    # Solve
    solver = cp_model.CpSolver()
    status = solver.Solve(model)

    # Print solution.
    if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE:
        print(f'Total cost = {solver.ObjectiveValue()}\n')
        for worker in range(num_workers):
            for task in range(num_tasks):
                if solver.BooleanValue(x[worker, task]):
                    print(f'Worker {worker} assigned to task {task}.' +
                          f' Cost = {costs[worker][task]}')
    else:
        print('No solution found.')


if __name__ == '__main__':
    main()

C++

// Solve assignment problem for given group of workers.
#include <stdlib.h>

#include <cstdint>
#include <numeric>
#include <vector>

#include "absl/strings/str_format.h"
#include "absl/types/span.h"
#include "ortools/base/logging.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"

namespace operations_research {
namespace sat {

void AssignmentGroups() {
  // Data
  const std::vector<std::vector<int>> costs = {{
      {{90, 76, 75, 70, 50, 74}},
      {{35, 85, 55, 65, 48, 101}},
      {{125, 95, 90, 105, 59, 120}},
      {{45, 110, 95, 115, 104, 83}},
      {{60, 105, 80, 75, 59, 62}},
      {{45, 65, 110, 95, 47, 31}},
      {{38, 51, 107, 41, 69, 99}},
      {{47, 85, 57, 71, 92, 77}},
      {{39, 63, 97, 49, 118, 56}},
      {{47, 101, 71, 60, 88, 109}},
      {{17, 39, 103, 64, 61, 92}},
      {{101, 45, 83, 59, 92, 27}},
  }};
  const int num_workers = static_cast<int>(costs.size());
  std::vector<int> all_workers(num_workers);
  std::iota(all_workers.begin(), all_workers.end(), 0);

  const int num_tasks = static_cast<int>(costs[0].size());
  std::vector<int> all_tasks(num_tasks);
  std::iota(all_tasks.begin(), all_tasks.end(), 0);

  // Allowed groups of workers:
  const std::vector<std::vector<int64_t>> group1 = {{
      {{0, 0, 1, 1}},  // Workers 2, 3
      {{0, 1, 0, 1}},  // Workers 1, 3
      {{0, 1, 1, 0}},  // Workers 1, 2
      {{1, 1, 0, 0}},  // Workers 0, 1
      {{1, 0, 1, 0}},  // Workers 0, 2
  }};

  const std::vector<std::vector<int64_t>> group2 = {{
      {{0, 0, 1, 1}},  // Workers 6, 7
      {{0, 1, 0, 1}},  // Workers 5, 7
      {{0, 1, 1, 0}},  // Workers 5, 6
      {{1, 1, 0, 0}},  // Workers 4, 5
      {{1, 0, 0, 1}},  // Workers 4, 7
  }};

  const std::vector<std::vector<int64_t>> group3 = {{
      {{0, 0, 1, 1}},  // Workers 10, 11
      {{0, 1, 0, 1}},  // Workers 9, 11
      {{0, 1, 1, 0}},  // Workers 9, 10
      {{1, 0, 1, 0}},  // Workers 8, 10
      {{1, 0, 0, 1}},  // Workers 8, 11
  }};

  // Model
  CpModelBuilder cp_model;

  // Variables
  // x[i][j] is an array of Boolean variables. x[i][j] is true
  // if worker i is assigned to task j.
  std::vector<std::vector<BoolVar>> x(num_workers,
                                      std::vector<BoolVar>(num_tasks));
  for (int worker : all_workers) {
    for (int task : all_tasks) {
      x[worker][task] = cp_model.NewBoolVar().WithName(
          absl::StrFormat("x[%d,%d]", worker, task));
    }
  }

  // Constraints
  // Each worker is assigned to at most one task.
  for (int worker : all_workers) {
    cp_model.AddAtMostOne(x[worker]);
  }
  // Each task is assigned to exactly one worker.
  for (int task : all_tasks) {
    std::vector<BoolVar> tasks;
    for (int worker : all_workers) {
      tasks.push_back(x[worker][task]);
    }
    cp_model.AddExactlyOne(tasks);
  }

  // Create variables for each worker, indicating whether they work on some
  // task.
  std::vector<IntVar> work(num_workers);
  for (int worker : all_workers) {
    work[worker] = IntVar(
        cp_model.NewBoolVar().WithName(absl::StrFormat("work[%d]", worker)));
  }

  for (int worker : all_workers) {
    LinearExpr task_sum;
    for (int task : all_tasks) {
      task_sum += x[worker][task];
    }
    cp_model.AddEquality(work[worker], task_sum);
  }

  // Define the allowed groups of worders
  auto table1 =
      cp_model.AddAllowedAssignments({work[0], work[1], work[2], work[3]});
  for (const auto& t : group1) {
    table1.AddTuple(t);
  }
  auto table2 =
      cp_model.AddAllowedAssignments({work[4], work[5], work[6], work[7]});
  for (const auto& t : group2) {
    table2.AddTuple(t);
  }
  auto table3 =
      cp_model.AddAllowedAssignments({work[8], work[9], work[10], work[11]});
  for (const auto& t : group3) {
    table3.AddTuple(t);
  }

  // Objective
  LinearExpr total_cost;
  for (int worker : all_workers) {
    for (int task : all_tasks) {
      total_cost += x[worker][task] * costs[worker][task];
    }
  }
  cp_model.Minimize(total_cost);

  // Solve
  const CpSolverResponse response = Solve(cp_model.Build());

  // Print solution.
  if (response.status() == CpSolverStatus::INFEASIBLE) {
    LOG(FATAL) << "No solution found.";
  }
  LOG(INFO) << "Total cost: " << response.objective_value();
  LOG(INFO);
  for (int worker : all_workers) {
    for (int task : all_tasks) {
      if (SolutionBooleanValue(response, x[worker][task])) {
        LOG(INFO) << "Worker " << worker << " assigned to task " << task
                  << ".  Cost: " << costs[worker][task];
      }
    }
  }
}
}  // namespace sat
}  // namespace operations_research

int main(int argc, char** argv) {
  operations_research::sat::AssignmentGroups();
  return EXIT_SUCCESS;
}

Java

// CP-SAT example that solves an assignment problem.
package com.google.ortools.sat.samples;
import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverStatus;
import com.google.ortools.sat.IntVar;
import com.google.ortools.sat.LinearExpr;
import com.google.ortools.sat.LinearExprBuilder;
import com.google.ortools.sat.Literal;
import java.util.ArrayList;
import java.util.List;
import java.util.stream.IntStream;

/** Assignment problem. */
public class AssignmentGroupsSat {
  public static void main(String[] args) {
    Loader.loadNativeLibraries();
    // Data
    int[][] costs = {
        {90, 76, 75, 70, 50, 74},
        {35, 85, 55, 65, 48, 101},
        {125, 95, 90, 105, 59, 120},
        {45, 110, 95, 115, 104, 83},
        {60, 105, 80, 75, 59, 62},
        {45, 65, 110, 95, 47, 31},
        {38, 51, 107, 41, 69, 99},
        {47, 85, 57, 71, 92, 77},
        {39, 63, 97, 49, 118, 56},
        {47, 101, 71, 60, 88, 109},
        {17, 39, 103, 64, 61, 92},
        {101, 45, 83, 59, 92, 27},
    };
    final int numWorkers = costs.length;
    final int numTasks = costs[0].length;

    final int[] allWorkers = IntStream.range(0, numWorkers).toArray();
    final int[] allTasks = IntStream.range(0, numTasks).toArray();

    // Allowed groups of workers:
    int[][] group1 = {
        {0, 0, 1, 1}, // Workers 2, 3
        {0, 1, 0, 1}, // Workers 1, 3
        {0, 1, 1, 0}, // Workers 1, 2
        {1, 1, 0, 0}, // Workers 0, 1
        {1, 0, 1, 0}, // Workers 0, 2
    };

    int[][] group2 = {
        {0, 0, 1, 1}, // Workers 6, 7
        {0, 1, 0, 1}, // Workers 5, 7
        {0, 1, 1, 0}, // Workers 5, 6
        {1, 1, 0, 0}, // Workers 4, 5
        {1, 0, 0, 1}, // Workers 4, 7
    };

    int[][] group3 = {
        {0, 0, 1, 1}, // Workers 10, 11
        {0, 1, 0, 1}, // Workers 9, 11
        {0, 1, 1, 0}, // Workers 9, 10
        {1, 0, 1, 0}, // Workers 8, 10
        {1, 0, 0, 1}, // Workers 8, 11
    };

    // Model
    CpModel model = new CpModel();

    // Variables
    Literal[][] x = new Literal[numWorkers][numTasks];
    for (int worker : allWorkers) {
      for (int task : allTasks) {
        x[worker][task] = model.newBoolVar("x[" + worker + "," + task + "]");
      }
    }

    // Constraints
    // Each worker is assigned to at most one task.
    for (int worker : allWorkers) {
      List<Literal> tasks = new ArrayList<>();
      for (int task : allTasks) {
        tasks.add(x[worker][task]);
      }
      model.addAtMostOne(tasks);
    }

    // Each task is assigned to exactly one worker.
    for (int task : allTasks) {
      List<Literal> workers = new ArrayList<>();
      for (int worker : allWorkers) {
        workers.add(x[worker][task]);
      }
      model.addExactlyOne(workers);
    }

    // Create variables for each worker, indicating whether they work on some task.
    IntVar[] work = new IntVar[numWorkers];
    for (int worker : allWorkers) {
      work[worker] = model.newBoolVar("work[" + worker + "]");
    }

    for (int worker : allWorkers) {
      LinearExprBuilder expr = LinearExpr.newBuilder();
      for (int task : allTasks) {
        expr.add(x[worker][task]);
      }
      model.addEquality(work[worker], expr);
    }

    // Define the allowed groups of worders
    model.addAllowedAssignments(new IntVar[] {work[0], work[1], work[2], work[3]})
        .addTuples(group1);
    model.addAllowedAssignments(new IntVar[] {work[4], work[5], work[6], work[7]})
        .addTuples(group2);
    model.addAllowedAssignments(new IntVar[] {work[8], work[9], work[10], work[11]})
        .addTuples(group3);

    // Objective
    LinearExprBuilder obj = LinearExpr.newBuilder();
    for (int worker : allWorkers) {
      for (int task : allTasks) {
        obj.addTerm(x[worker][task], costs[worker][task]);
      }
    }
    model.minimize(obj);

    // Solve
    CpSolver solver = new CpSolver();
    CpSolverStatus status = solver.solve(model);

    // Print solution.
    // Check that the problem has a feasible solution.
    if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) {
      System.out.println("Total cost: " + solver.objectiveValue() + "\n");
      for (int worker : allWorkers) {
        for (int task : allTasks) {
          if (solver.booleanValue(x[worker][task])) {
            System.out.println("Worker " + worker + " assigned to task " + task
                + ".  Cost: " + costs[worker][task]);
          }
        }
      }
    } else {
      System.err.println("No solution found.");
    }
  }

  private AssignmentGroupsSat() {}
}

C#

using System;
using System.Collections.Generic;
using System.Linq;
using Google.OrTools.Sat;

public class AssignmentGroupsSat
{
    public static void Main(String[] args)
    {
        // Data.
        int[,] costs = {
            { 90, 76, 75, 70, 50, 74 },    { 35, 85, 55, 65, 48, 101 }, { 125, 95, 90, 105, 59, 120 },
            { 45, 110, 95, 115, 104, 83 }, { 60, 105, 80, 75, 59, 62 }, { 45, 65, 110, 95, 47, 31 },
            { 38, 51, 107, 41, 69, 99 },   { 47, 85, 57, 71, 92, 77 },  { 39, 63, 97, 49, 118, 56 },
            { 47, 101, 71, 60, 88, 109 },  { 17, 39, 103, 64, 61, 92 }, { 101, 45, 83, 59, 92, 27 },
        };
        int numWorkers = costs.GetLength(0);
        int numTasks = costs.GetLength(1);

        int[] allWorkers = Enumerable.Range(0, numWorkers).ToArray();
        int[] allTasks = Enumerable.Range(0, numTasks).ToArray();

        // Allowed groups of workers:
        long[,] group1 = {
            { 0, 0, 1, 1 }, // Workers 2, 3
            { 0, 1, 0, 1 }, // Workers 1, 3
            { 0, 1, 1, 0 }, // Workers 1, 2
            { 1, 1, 0, 0 }, // Workers 0, 1
            { 1, 0, 1, 0 }, // Workers 0, 2
        };

        long[,] group2 = {
            { 0, 0, 1, 1 }, // Workers 6, 7
            { 0, 1, 0, 1 }, // Workers 5, 7
            { 0, 1, 1, 0 }, // Workers 5, 6
            { 1, 1, 0, 0 }, // Workers 4, 5
            { 1, 0, 0, 1 }, // Workers 4, 7
        };

        long[,] group3 = {
            { 0, 0, 1, 1 }, // Workers 10, 11
            { 0, 1, 0, 1 }, // Workers 9, 11
            { 0, 1, 1, 0 }, // Workers 9, 10
            { 1, 0, 1, 0 }, // Workers 8, 10
            { 1, 0, 0, 1 }, // Workers 8, 11
        };

        // Model.
        CpModel model = new CpModel();

        // Variables.
        BoolVar[,] x = new BoolVar[numWorkers, numTasks];
        // Variables in a 1-dim array.
        foreach (int worker in allWorkers)
        {
            foreach (int task in allTasks)
            {
                x[worker, task] = model.NewBoolVar($"x[{worker},{task}]");
            }
        }

        // Constraints
        // Each worker is assigned to at most one task.
        foreach (int worker in allWorkers)
        {
            List<ILiteral> tasks = new List<ILiteral>();
            foreach (int task in allTasks)
            {
                tasks.Add(x[worker, task]);
            }
            model.AddAtMostOne(tasks);
        }

        // Each task is assigned to exactly one worker.
        foreach (int task in allTasks)
        {
            List<ILiteral> workers = new List<ILiteral>();
            foreach (int worker in allWorkers)
            {
                workers.Add(x[worker, task]);
            }
            model.AddExactlyOne(workers);
        }

        // Create variables for each worker, indicating whether they work on some task.
        BoolVar[] work = new BoolVar[numWorkers];
        foreach (int worker in allWorkers)
        {
            work[worker] = model.NewBoolVar($"work[{worker}]");
        }

        foreach (int worker in allWorkers)
        {
            List<ILiteral> tasks = new List<ILiteral>();
            foreach (int task in allTasks)
            {
                tasks.Add(x[worker, task]);
            }
            model.Add(work[worker] == LinearExpr.Sum(tasks));
        }

        // Define the allowed groups of worders
        model.AddAllowedAssignments(new IntVar[] { work[0], work[1], work[2], work[3] }).AddTuples(group1);
        model.AddAllowedAssignments(new IntVar[] { work[4], work[5], work[6], work[7] }).AddTuples(group2);
        model.AddAllowedAssignments(new IntVar[] { work[8], work[9], work[10], work[11] }).AddTuples(group3);

        // Objective
        LinearExprBuilder obj = LinearExpr.NewBuilder();
        foreach (int worker in allWorkers)
        {
            foreach (int task in allTasks)
            {
                obj.AddTerm(x[worker, task], costs[worker, task]);
            }
        }
        model.Minimize(obj);

        // Solve
        CpSolver solver = new CpSolver();
        CpSolverStatus status = solver.Solve(model);
        Console.WriteLine($"Solve status: {status}");

        // Print solution.
        // Check that the problem has a feasible solution.
        if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible)
        {
            Console.WriteLine($"Total cost: {solver.ObjectiveValue}\n");
            foreach (int worker in allWorkers)
            {
                foreach (int task in allTasks)
                {
                    if (solver.Value(x[worker, task]) > 0.5)
                    {
                        Console.WriteLine($"Worker {worker} assigned to task {task}. " +
                                          $"Cost: {costs[worker, task]}");
                    }
                }
            }
        }
        else
        {
            Console.WriteLine("No solution found.");
        }

        Console.WriteLine("Statistics");
        Console.WriteLine($"  - conflicts : {solver.NumConflicts()}");
        Console.WriteLine($"  - branches  : {solver.NumBranches()}");
        Console.WriteLine($"  - wall time : {solver.WallTime()}s");
    }
}

MIP solution

Next, we describe a solution to the problem using the MIP solver.

Import the libraries

The following code imports the required library.

Python

from ortools.linear_solver import pywraplp

C++

#include <cstdint>
#include <numeric>
#include <utility>
#include <vector>

#include "absl/strings/str_format.h"
#include "ortools/base/logging.h"
#include "ortools/linear_solver/linear_solver.h"

Java

import com.google.ortools.Loader;
import com.google.ortools.linearsolver.MPConstraint;
import com.google.ortools.linearsolver.MPObjective;
import com.google.ortools.linearsolver.MPSolver;
import com.google.ortools.linearsolver.MPVariable;
import java.util.stream.IntStream;

C#

using System;
using System.Collections.Generic;
using System.Linq;
using Google.OrTools.LinearSolver;

Define the data

The following code creates the data for the program.

Python

costs = [
    [90, 76, 75, 70, 50, 74],
    [35, 85, 55, 65, 48, 101],
    [125, 95, 90, 105, 59, 120],
    [45, 110, 95, 115, 104, 83],
    [60, 105, 80, 75, 59, 62],
    [45, 65, 110, 95, 47, 31],
    [38, 51, 107, 41, 69, 99],
    [47, 85, 57, 71, 92, 77],
    [39, 63, 97, 49, 118, 56],
    [47, 101, 71, 60, 88, 109],
    [17, 39, 103, 64, 61, 92],
    [101, 45, 83, 59, 92, 27],
]
num_workers = len(costs)
num_tasks = len(costs[0])

C++

const std::vector<std::vector<int64_t>> costs = {{
    {{90, 76, 75, 70, 50, 74}},
    {{35, 85, 55, 65, 48, 101}},
    {{125, 95, 90, 105, 59, 120}},
    {{45, 110, 95, 115, 104, 83}},
    {{60, 105, 80, 75, 59, 62}},
    {{45, 65, 110, 95, 47, 31}},
    {{38, 51, 107, 41, 69, 99}},
    {{47, 85, 57, 71, 92, 77}},
    {{39, 63, 97, 49, 118, 56}},
    {{47, 101, 71, 60, 88, 109}},
    {{17, 39, 103, 64, 61, 92}},
    {{101, 45, 83, 59, 92, 27}},
}};
const int num_workers = costs.size();
std::vector<int> all_workers(num_workers);
std::iota(all_workers.begin(), all_workers.end(), 0);

const int num_tasks = costs[0].size();
std::vector<int> all_tasks(num_tasks);
std::iota(all_tasks.begin(), all_tasks.end(), 0);

Java

double[][] costs = {
    {90, 76, 75, 70, 50, 74},
    {35, 85, 55, 65, 48, 101},
    {125, 95, 90, 105, 59, 120},
    {45, 110, 95, 115, 104, 83},
    {60, 105, 80, 75, 59, 62},
    {45, 65, 110, 95, 47, 31},
    {38, 51, 107, 41, 69, 99},
    {47, 85, 57, 71, 92, 77},
    {39, 63, 97, 49, 118, 56},
    {47, 101, 71, 60, 88, 109},
    {17, 39, 103, 64, 61, 92},
    {101, 45, 83, 59, 92, 27},
};
int numWorkers = costs.length;
int numTasks = costs[0].length;

final int[] allWorkers = IntStream.range(0, numWorkers).toArray();
final int[] allTasks = IntStream.range(0, numTasks).toArray();

C#

int[,] costs = {
    { 90, 76, 75, 70, 50, 74 },    { 35, 85, 55, 65, 48, 101 }, { 125, 95, 90, 105, 59, 120 },
    { 45, 110, 95, 115, 104, 83 }, { 60, 105, 80, 75, 59, 62 }, { 45, 65, 110, 95, 47, 31 },
    { 38, 51, 107, 41, 69, 99 },   { 47, 85, 57, 71, 92, 77 },  { 39, 63, 97, 49, 118, 56 },
    { 47, 101, 71, 60, 88, 109 },  { 17, 39, 103, 64, 61, 92 }, { 101, 45, 83, 59, 92, 27 },
};
int numWorkers = costs.GetLength(0);
int numTasks = costs.GetLength(1);

int[] allWorkers = Enumerable.Range(0, numWorkers).ToArray();
int[] allTasks = Enumerable.Range(0, numTasks).ToArray();

Create the allowed groups

The following code creates the allowed groups, by looping through the three sets of subgroups shown above.

Python

group1 = [  # Subgroups of workers 0 - 3
    [2, 3],
    [1, 3],
    [1, 2],
    [0, 1],
    [0, 2],
]

group2 = [  # Subgroups of workers 4 - 7
    [6, 7],
    [5, 7],
    [5, 6],
    [4, 5],
    [4, 7],
]

group3 = [  # Subgroups of workers 8 - 11
    [10, 11],
    [9, 11],
    [9, 10],
    [8, 10],
    [8, 11],
]

C++

using WorkerIndex = int;
using Binome = std::pair<WorkerIndex, WorkerIndex>;
using AllowedBinomes = std::vector<Binome>;
const AllowedBinomes group1 = {{
    // group of worker 0-3
    {2, 3},
    {1, 3},
    {1, 2},
    {0, 1},
    {0, 2},
}};

const AllowedBinomes group2 = {{
    // group of worker 4-7
    {6, 7},
    {5, 7},
    {5, 6},
    {4, 5},
    {4, 7},
}};

const AllowedBinomes group3 = {{
    // group of worker 8-11
    {10, 11},
    {9, 11},
    {9, 10},
    {8, 10},
    {8, 11},
}};

Java

int[][] group1 = {
    // group of worker 0-3
    {2, 3},
    {1, 3},
    {1, 2},
    {0, 1},
    {0, 2},
};

int[][] group2 = {
    // group of worker 4-7
    {6, 7},
    {5, 7},
    {5, 6},
    {4, 5},
    {4, 7},
};

int[][] group3 = {
    // group of worker 8-11
    {10, 11},
    {9, 11},
    {9, 10},
    {8, 10},
    {8, 11},
};

C#

int[,] group1 = {
    // group of worker 0-3
    { 2, 3 }, { 1, 3 }, { 1, 2 }, { 0, 1 }, { 0, 2 },
};

int[,] group2 = {
    // group of worker 4-7
    { 6, 7 }, { 5, 7 }, { 5, 6 }, { 4, 5 }, { 4, 7 },
};

int[,] group3 = {
    // group of worker 8-11
    { 10, 11 }, { 9, 11 }, { 9, 10 }, { 8, 10 }, { 8, 11 },
};

Declare the solver

The following code creates the solver.

Python

# Create the mip solver with the SCIP backend.
solver = pywraplp.Solver.CreateSolver('SCIP')

C++

// Create the mip solver with the SCIP backend.
std::unique_ptr<MPSolver> solver(MPSolver::CreateSolver("SCIP"));
if (!solver) {
  LOG(WARNING) << "SCIP solver unavailable.";
  return;
}

Java

// Create the linear solver with the SCIP backend.
MPSolver solver = MPSolver.createSolver("SCIP");
if (solver == null) {
  System.out.println("Could not create solver SCIP");
  return;
}

C#

Solver solver = Solver.CreateSolver("SCIP");

Create the variables

The following code creates an array of variables for the problem.

Python

# x[worker, task] is an array of 0-1 variables, which will be 1
# if the worker is assigned to the task.
x = {}
for worker in range(num_workers):
    for task in range(num_tasks):
        x[worker, task] = solver.BoolVar(f'x[{worker},{task}]')

C++

// x[i][j] is an array of 0-1 variables, which will be 1
// if worker i is assigned to task j.
std::vector<std::vector<const MPVariable*>> x(
    num_workers, std::vector<const MPVariable*>(num_tasks));
for (int worker : all_workers) {
  for (int task : all_tasks) {
    x[worker][task] =
        solver->MakeBoolVar(absl::StrFormat("x[%d,%d]", worker, task));
  }
}

Java

// x[i][j] is an array of 0-1 variables, which will be 1
// if worker i is assigned to task j.
MPVariable[][] x = new MPVariable[numWorkers][numTasks];
for (int worker : allWorkers) {
  for (int task : allTasks) {
    x[worker][task] = solver.makeBoolVar("x[" + worker + "," + task + "]");
  }
}

C#

// x[i, j] is an array of 0-1 variables, which will be 1
// if worker i is assigned to task j.
Variable[,] x = new Variable[numWorkers, numTasks];
foreach (int worker in allWorkers)
{
    foreach (int task in allTasks)
    {
        x[worker, task] = solver.MakeBoolVar($"x[{worker},{task}]");
    }
}

Add the constraints

The following code creates the constraints for the program.

Python

# The total size of the tasks each worker takes on is at most total_size_max.
for worker in range(num_workers):
    solver.Add(
        solver.Sum([x[worker, task] for task in range(num_tasks)]) <= 1)

# Each task is assigned to exactly one worker.
for task in range(num_tasks):
    solver.Add(
        solver.Sum([x[worker, task] for worker in range(num_workers)]) == 1)

C++

// Each worker is assigned to at most one task.
for (int worker : all_workers) {
  LinearExpr worker_sum;
  for (int task : all_tasks) {
    worker_sum += x[worker][task];
  }
  solver->MakeRowConstraint(worker_sum <= 1.0);
}
// Each task is assigned to exactly one worker.
for (int task : all_tasks) {
  LinearExpr task_sum;
  for (int worker : all_workers) {
    task_sum += x[worker][task];
  }
  solver->MakeRowConstraint(task_sum == 1.0);
}

Java

// Each worker is assigned to at most one task.
for (int worker : allWorkers) {
  MPConstraint constraint = solver.makeConstraint(0, 1, "");
  for (int task : allTasks) {
    constraint.setCoefficient(x[worker][task], 1);
  }
}
// Each task is assigned to exactly one worker.
for (int task : allTasks) {
  MPConstraint constraint = solver.makeConstraint(1, 1, "");
  for (int worker : allWorkers) {
    constraint.setCoefficient(x[worker][task], 1);
  }
}

C#

// Each worker is assigned to at most one task.
foreach (int worker in allWorkers)
{
    Constraint constraint = solver.MakeConstraint(0, 1, "");
    foreach (int task in allTasks)
    {
        constraint.SetCoefficient(x[worker, task], 1);
    }
}
// Each task is assigned to exactly one worker.
foreach (int task in allTasks)
{
    Constraint constraint = solver.MakeConstraint(1, 1, "");
    foreach (int worker in allWorkers)
    {
        constraint.SetCoefficient(x[worker, task], 1);
    }
}

Create the objective

The following code creates the objective function.

Python

objective_terms = []
for worker in range(num_workers):
    for task in range(num_tasks):
        objective_terms.append(costs[worker][task] * x[worker, task])
solver.Minimize(solver.Sum(objective_terms))

C++

MPObjective* const objective = solver->MutableObjective();
for (int worker : all_workers) {
  for (int task : all_tasks) {
    objective->SetCoefficient(x[worker][task], costs[worker][task]);
  }
}
objective->SetMinimization();

Java

MPObjective objective = solver.objective();
for (int worker : allWorkers) {
  for (int task : allTasks) {
    objective.setCoefficient(x[worker][task], costs[worker][task]);
  }
}
objective.setMinimization();

C#

Objective objective = solver.Objective();
foreach (int worker in allWorkers)
{
    foreach (int task in allTasks)
    {
        objective.SetCoefficient(x[worker, task], costs[worker, task]);
    }
}
objective.SetMinimization();

Invoke the solver

The following code invokes the solver and displays the results.

Python

status = solver.Solve()

C++

const MPSolver::ResultStatus result_status = solver->Solve();

Java

MPSolver.ResultStatus resultStatus = solver.solve();

C#

Solver.ResultStatus resultStatus = solver.Solve();

Display the results

Now, we can print the solution.

Python

if status == pywraplp.Solver.OPTIMAL or status == pywraplp.Solver.FEASIBLE:
    print(f'Total cost = {solver.Objective().Value()}\n')
    for worker in range(num_workers):
        for task in range(num_tasks):
            if x[worker, task].solution_value() > 0.5:
                print(f'Worker {worker} assigned to task {task}.' +
                      f' Cost: {costs[worker][task]}')
else:
    print('No solution found.')

C++

// Check that the problem has a feasible solution.
if (result_status != MPSolver::OPTIMAL &&
    result_status != MPSolver::FEASIBLE) {
  LOG(FATAL) << "No solution found.";
}
LOG(INFO) << "Total cost = " << objective->Value() << "\n\n";
for (int worker : all_workers) {
  for (int task : all_tasks) {
    // Test if x[i][j] is 0 or 1 (with tolerance for floating point
    // arithmetic).
    if (x[worker][task]->solution_value() > 0.5) {
      LOG(INFO) << "Worker " << worker << " assigned to task " << task
                << ".  Cost: " << costs[worker][task];
    }
  }
}

Java

// Check that the problem has a feasible solution.
if (resultStatus == MPSolver.ResultStatus.OPTIMAL
    || resultStatus == MPSolver.ResultStatus.FEASIBLE) {
  System.out.println("Total cost: " + objective.value() + "\n");
  for (int worker : allWorkers) {
    for (int task : allTasks) {
      // Test if x[i][j] is 0 or 1 (with tolerance for floating point
      // arithmetic).
      if (x[worker][task].solutionValue() > 0.5) {
        System.out.println("Worker " + worker + " assigned to task " + task
            + ".  Cost: " + costs[worker][task]);
      }
    }
  }
} else {
  System.err.println("No solution found.");
}

C#

// Check that the problem has a feasible solution.
if (resultStatus == Solver.ResultStatus.OPTIMAL || resultStatus == Solver.ResultStatus.FEASIBLE)
{
    Console.WriteLine($"Total cost: {solver.Objective().Value()}\n");
    foreach (int worker in allWorkers)
    {
        foreach (int task in allTasks)
        {
            // Test if x[i, j] is 0 or 1 (with tolerance for floating point
            // arithmetic).
            if (x[worker, task].SolutionValue() > 0.5)
            {
                Console.WriteLine($"Worker {worker} assigned to task {task}. Cost: {costs[worker, task]}");
            }
        }
    }
}
else
{
    Console.WriteLine("No solution found.");
}

Here's the output of the program:

Minimum cost =  239.0

Worker 0  assigned to task 4   Cost =  50
Worker 1  assigned to task 2   Cost =  55
Worker 5  assigned to task 5   Cost =  31
Worker 6  assigned to task 3   Cost =  41
Worker 10  assigned to task 0   Cost =  17
Worker 11  assigned to task 1   Cost =  45

Time =  0.3281 seconds

The entire program

Here is the entire program.

Python

"""Solve assignment problem for given group of workers."""
from ortools.linear_solver import pywraplp


def main():
    # Data
    costs = [
        [90, 76, 75, 70, 50, 74],
        [35, 85, 55, 65, 48, 101],
        [125, 95, 90, 105, 59, 120],
        [45, 110, 95, 115, 104, 83],
        [60, 105, 80, 75, 59, 62],
        [45, 65, 110, 95, 47, 31],
        [38, 51, 107, 41, 69, 99],
        [47, 85, 57, 71, 92, 77],
        [39, 63, 97, 49, 118, 56],
        [47, 101, 71, 60, 88, 109],
        [17, 39, 103, 64, 61, 92],
        [101, 45, 83, 59, 92, 27],
    ]
    num_workers = len(costs)
    num_tasks = len(costs[0])

    # Allowed groups of workers:
    group1 = [  # Subgroups of workers 0 - 3
        [2, 3],
        [1, 3],
        [1, 2],
        [0, 1],
        [0, 2],
    ]

    group2 = [  # Subgroups of workers 4 - 7
        [6, 7],
        [5, 7],
        [5, 6],
        [4, 5],
        [4, 7],
    ]

    group3 = [  # Subgroups of workers 8 - 11
        [10, 11],
        [9, 11],
        [9, 10],
        [8, 10],
        [8, 11],
    ]

    # Solver.
    # Create the mip solver with the SCIP backend.
    solver = pywraplp.Solver.CreateSolver('SCIP')

    # Variables
    # x[worker, task] is an array of 0-1 variables, which will be 1
    # if the worker is assigned to the task.
    x = {}
    for worker in range(num_workers):
        for task in range(num_tasks):
            x[worker, task] = solver.BoolVar(f'x[{worker},{task}]')

    # Constraints
    # The total size of the tasks each worker takes on is at most total_size_max.
    for worker in range(num_workers):
        solver.Add(
            solver.Sum([x[worker, task] for task in range(num_tasks)]) <= 1)

    # Each task is assigned to exactly one worker.
    for task in range(num_tasks):
        solver.Add(
            solver.Sum([x[worker, task] for worker in range(num_workers)]) == 1)

    # Create variables for each worker, indicating whether they work on some task.
    work = {}
    for worker in range(num_workers):
        work[worker] = solver.BoolVar(f'work[{worker}]')

    for worker in range(num_workers):
        solver.Add(work[worker] == solver.Sum(
            [x[worker, task] for task in range(num_tasks)]))

    # Group1
    constraint_g1 = solver.Constraint(1, 1)
    for i in range(len(group1)):
        # a*b can be transformed into 0 <= a + b - 2*p <= 1 with p in [0,1]
        # p is True if a AND b, False otherwise
        constraint = solver.Constraint(0, 1)
        constraint.SetCoefficient(work[group1[i][0]], 1)
        constraint.SetCoefficient(work[group1[i][1]], 1)
        p = solver.BoolVar(f'g1_p{i}')
        constraint.SetCoefficient(p, -2)

        constraint_g1.SetCoefficient(p, 1)

    # Group2
    constraint_g2 = solver.Constraint(1, 1)
    for i in range(len(group2)):
        # a*b can be transformed into 0 <= a + b - 2*p <= 1 with p in [0,1]
        # p is True if a AND b, False otherwise
        constraint = solver.Constraint(0, 1)
        constraint.SetCoefficient(work[group2[i][0]], 1)
        constraint.SetCoefficient(work[group2[i][1]], 1)
        p = solver.BoolVar(f'g2_p{i}')
        constraint.SetCoefficient(p, -2)

        constraint_g2.SetCoefficient(p, 1)

    # Group3
    constraint_g3 = solver.Constraint(1, 1)
    for i in range(len(group3)):
        # a*b can be transformed into 0 <= a + b - 2*p <= 1 with p in [0,1]
        # p is True if a AND b, False otherwise
        constraint = solver.Constraint(0, 1)
        constraint.SetCoefficient(work[group3[i][0]], 1)
        constraint.SetCoefficient(work[group3[i][1]], 1)
        p = solver.BoolVar(f'g3_p{i}')
        constraint.SetCoefficient(p, -2)

        constraint_g3.SetCoefficient(p, 1)

    # Objective
    objective_terms = []
    for worker in range(num_workers):
        for task in range(num_tasks):
            objective_terms.append(costs[worker][task] * x[worker, task])
    solver.Minimize(solver.Sum(objective_terms))

    # Solve
    status = solver.Solve()

    # Print solution.
    if status == pywraplp.Solver.OPTIMAL or status == pywraplp.Solver.FEASIBLE:
        print(f'Total cost = {solver.Objective().Value()}\n')
        for worker in range(num_workers):
            for task in range(num_tasks):
                if x[worker, task].solution_value() > 0.5:
                    print(f'Worker {worker} assigned to task {task}.' +
                          f' Cost: {costs[worker][task]}')
    else:
        print('No solution found.')


if __name__ == '__main__':
    main()

C++

// Solve a simple assignment problem.
#include <cstdint>
#include <numeric>
#include <utility>
#include <vector>

#include "absl/strings/str_format.h"
#include "ortools/base/logging.h"
#include "ortools/linear_solver/linear_solver.h"

namespace operations_research {
void AssignmentTeamsMip() {
  // Data
  const std::vector<std::vector<int64_t>> costs = {{
      {{90, 76, 75, 70, 50, 74}},
      {{35, 85, 55, 65, 48, 101}},
      {{125, 95, 90, 105, 59, 120}},
      {{45, 110, 95, 115, 104, 83}},
      {{60, 105, 80, 75, 59, 62}},
      {{45, 65, 110, 95, 47, 31}},
      {{38, 51, 107, 41, 69, 99}},
      {{47, 85, 57, 71, 92, 77}},
      {{39, 63, 97, 49, 118, 56}},
      {{47, 101, 71, 60, 88, 109}},
      {{17, 39, 103, 64, 61, 92}},
      {{101, 45, 83, 59, 92, 27}},
  }};
  const int num_workers = costs.size();
  std::vector<int> all_workers(num_workers);
  std::iota(all_workers.begin(), all_workers.end(), 0);

  const int num_tasks = costs[0].size();
  std::vector<int> all_tasks(num_tasks);
  std::iota(all_tasks.begin(), all_tasks.end(), 0);

  // Allowed groups of workers:
  using WorkerIndex = int;
  using Binome = std::pair<WorkerIndex, WorkerIndex>;
  using AllowedBinomes = std::vector<Binome>;
  const AllowedBinomes group1 = {{
      // group of worker 0-3
      {2, 3},
      {1, 3},
      {1, 2},
      {0, 1},
      {0, 2},
  }};

  const AllowedBinomes group2 = {{
      // group of worker 4-7
      {6, 7},
      {5, 7},
      {5, 6},
      {4, 5},
      {4, 7},
  }};

  const AllowedBinomes group3 = {{
      // group of worker 8-11
      {10, 11},
      {9, 11},
      {9, 10},
      {8, 10},
      {8, 11},
  }};

  // Solver
  // Create the mip solver with the SCIP backend.
  std::unique_ptr<MPSolver> solver(MPSolver::CreateSolver("SCIP"));
  if (!solver) {
    LOG(WARNING) << "SCIP solver unavailable.";
    return;
  }

  // Variables
  // x[i][j] is an array of 0-1 variables, which will be 1
  // if worker i is assigned to task j.
  std::vector<std::vector<const MPVariable*>> x(
      num_workers, std::vector<const MPVariable*>(num_tasks));
  for (int worker : all_workers) {
    for (int task : all_tasks) {
      x[worker][task] =
          solver->MakeBoolVar(absl::StrFormat("x[%d,%d]", worker, task));
    }
  }

  // Constraints
  // Each worker is assigned to at most one task.
  for (int worker : all_workers) {
    LinearExpr worker_sum;
    for (int task : all_tasks) {
      worker_sum += x[worker][task];
    }
    solver->MakeRowConstraint(worker_sum <= 1.0);
  }
  // Each task is assigned to exactly one worker.
  for (int task : all_tasks) {
    LinearExpr task_sum;
    for (int worker : all_workers) {
      task_sum += x[worker][task];
    }
    solver->MakeRowConstraint(task_sum == 1.0);
  }

  // Create variables for each worker, indicating whether they work on some
  // task.
  std::vector<const MPVariable*> work(num_workers);
  for (int worker : all_workers) {
    work[worker] = solver->MakeBoolVar(absl::StrFormat("work[%d]", worker));
  }

  for (int worker : all_workers) {
    LinearExpr task_sum;
    for (int task : all_tasks) {
      task_sum += x[worker][task];
    }
    solver->MakeRowConstraint(work[worker] == task_sum);
  }

  // Group1
  {
    MPConstraint* g1 = solver->MakeRowConstraint(1, 1);
    for (int i = 0; i < group1.size(); ++i) {
      // a*b can be transformed into 0 <= a + b - 2*p <= 1 with p in [0,1]
      // p is true if a AND b, false otherwise
      MPConstraint* tmp = solver->MakeRowConstraint(0, 1);
      tmp->SetCoefficient(work[group1[i].first], 1);
      tmp->SetCoefficient(work[group1[i].second], 1);
      MPVariable* p = solver->MakeBoolVar(absl::StrFormat("g1_p%d", i));
      tmp->SetCoefficient(p, -2);

      g1->SetCoefficient(p, 1);
    }
  }
  // Group2
  {
    MPConstraint* g2 = solver->MakeRowConstraint(1, 1);
    for (int i = 0; i < group2.size(); ++i) {
      // a*b can be transformed into 0 <= a + b - 2*p <= 1 with p in [0,1]
      // p is true if a AND b, false otherwise
      MPConstraint* tmp = solver->MakeRowConstraint(0, 1);
      tmp->SetCoefficient(work[group2[i].first], 1);
      tmp->SetCoefficient(work[group2[i].second], 1);
      MPVariable* p = solver->MakeBoolVar(absl::StrFormat("g2_p%d", i));
      tmp->SetCoefficient(p, -2);

      g2->SetCoefficient(p, 1);
    }
  }
  // Group3
  {
    MPConstraint* g3 = solver->MakeRowConstraint(1, 1);
    for (int i = 0; i < group3.size(); ++i) {
      // a*b can be transformed into 0 <= a + b - 2*p <= 1 with p in [0,1]
      // p is true if a AND b, false otherwise
      MPConstraint* tmp = solver->MakeRowConstraint(0, 1);
      tmp->SetCoefficient(work[group3[i].first], 1);
      tmp->SetCoefficient(work[group3[i].second], 1);
      MPVariable* p = solver->MakeBoolVar(absl::StrFormat("g3_p%d", i));
      tmp->SetCoefficient(p, -2);

      g3->SetCoefficient(p, 1);
    }
  }

  // Objective.
  MPObjective* const objective = solver->MutableObjective();
  for (int worker : all_workers) {
    for (int task : all_tasks) {
      objective->SetCoefficient(x[worker][task], costs[worker][task]);
    }
  }
  objective->SetMinimization();

  // Solve
  const MPSolver::ResultStatus result_status = solver->Solve();

  // Print solution.
  // Check that the problem has a feasible solution.
  if (result_status != MPSolver::OPTIMAL &&
      result_status != MPSolver::FEASIBLE) {
    LOG(FATAL) << "No solution found.";
  }
  LOG(INFO) << "Total cost = " << objective->Value() << "\n\n";
  for (int worker : all_workers) {
    for (int task : all_tasks) {
      // Test if x[i][j] is 0 or 1 (with tolerance for floating point
      // arithmetic).
      if (x[worker][task]->solution_value() > 0.5) {
        LOG(INFO) << "Worker " << worker << " assigned to task " << task
                  << ".  Cost: " << costs[worker][task];
      }
    }
  }
}
}  // namespace operations_research

int main(int argc, char** argv) {
  operations_research::AssignmentTeamsMip();
  return EXIT_SUCCESS;
}

Java

package com.google.ortools.linearsolver.samples;
import com.google.ortools.Loader;
import com.google.ortools.linearsolver.MPConstraint;
import com.google.ortools.linearsolver.MPObjective;
import com.google.ortools.linearsolver.MPSolver;
import com.google.ortools.linearsolver.MPVariable;
import java.util.stream.IntStream;

/** MIP example that solves an assignment problem. */
public class AssignmentGroupsMip {
  public static void main(String[] args) {
    Loader.loadNativeLibraries();
    // Data
    double[][] costs = {
        {90, 76, 75, 70, 50, 74},
        {35, 85, 55, 65, 48, 101},
        {125, 95, 90, 105, 59, 120},
        {45, 110, 95, 115, 104, 83},
        {60, 105, 80, 75, 59, 62},
        {45, 65, 110, 95, 47, 31},
        {38, 51, 107, 41, 69, 99},
        {47, 85, 57, 71, 92, 77},
        {39, 63, 97, 49, 118, 56},
        {47, 101, 71, 60, 88, 109},
        {17, 39, 103, 64, 61, 92},
        {101, 45, 83, 59, 92, 27},
    };
    int numWorkers = costs.length;
    int numTasks = costs[0].length;

    final int[] allWorkers = IntStream.range(0, numWorkers).toArray();
    final int[] allTasks = IntStream.range(0, numTasks).toArray();

    // Allowed groups of workers:
    int[][] group1 = {
        // group of worker 0-3
        {2, 3},
        {1, 3},
        {1, 2},
        {0, 1},
        {0, 2},
    };

    int[][] group2 = {
        // group of worker 4-7
        {6, 7},
        {5, 7},
        {5, 6},
        {4, 5},
        {4, 7},
    };

    int[][] group3 = {
        // group of worker 8-11
        {10, 11},
        {9, 11},
        {9, 10},
        {8, 10},
        {8, 11},
    };

    // Solver
    // Create the linear solver with the SCIP backend.
    MPSolver solver = MPSolver.createSolver("SCIP");
    if (solver == null) {
      System.out.println("Could not create solver SCIP");
      return;
    }

    // Variables
    // x[i][j] is an array of 0-1 variables, which will be 1
    // if worker i is assigned to task j.
    MPVariable[][] x = new MPVariable[numWorkers][numTasks];
    for (int worker : allWorkers) {
      for (int task : allTasks) {
        x[worker][task] = solver.makeBoolVar("x[" + worker + "," + task + "]");
      }
    }

    // Constraints
    // Each worker is assigned to at most one task.
    for (int worker : allWorkers) {
      MPConstraint constraint = solver.makeConstraint(0, 1, "");
      for (int task : allTasks) {
        constraint.setCoefficient(x[worker][task], 1);
      }
    }
    // Each task is assigned to exactly one worker.
    for (int task : allTasks) {
      MPConstraint constraint = solver.makeConstraint(1, 1, "");
      for (int worker : allWorkers) {
        constraint.setCoefficient(x[worker][task], 1);
      }
    }

    // Create variables for each worker, indicating whether they work on some task.
    MPVariable[] work = new MPVariable[numWorkers];
    for (int worker : allWorkers) {
      work[worker] = solver.makeBoolVar("work[" + worker + "]");
    }

    for (int worker : allWorkers) {
      // MPVariable[] vars = new MPVariable[numTasks];
      MPConstraint constraint = solver.makeConstraint(0, 0, "");
      for (int task : allTasks) {
        // vars[task] = x[worker][task];
        constraint.setCoefficient(x[worker][task], 1);
      }
      // solver.addEquality(work[worker], LinearExpr.sum(vars));
      constraint.setCoefficient(work[worker], -1);
    }

    // Group1
    MPConstraint constraintG1 = solver.makeConstraint(1, 1, "");
    for (int i = 0; i < group1.length; ++i) {
      // a*b can be transformed into 0 <= a + b - 2*p <= 1 with p in [0,1]
      // p is True if a AND b, False otherwise
      MPConstraint constraint = solver.makeConstraint(0, 1, "");
      constraint.setCoefficient(work[group1[i][0]], 1);
      constraint.setCoefficient(work[group1[i][1]], 1);
      MPVariable p = solver.makeBoolVar("g1_p" + i);
      constraint.setCoefficient(p, -2);

      constraintG1.setCoefficient(p, 1);
    }
    // Group2
    MPConstraint constraintG2 = solver.makeConstraint(1, 1, "");
    for (int i = 0; i < group2.length; ++i) {
      // a*b can be transformed into 0 <= a + b - 2*p <= 1 with p in [0,1]
      // p is True if a AND b, False otherwise
      MPConstraint constraint = solver.makeConstraint(0, 1, "");
      constraint.setCoefficient(work[group2[i][0]], 1);
      constraint.setCoefficient(work[group2[i][1]], 1);
      MPVariable p = solver.makeBoolVar("g2_p" + i);
      constraint.setCoefficient(p, -2);

      constraintG2.setCoefficient(p, 1);
    }
    // Group3
    MPConstraint constraintG3 = solver.makeConstraint(1, 1, "");
    for (int i = 0; i < group3.length; ++i) {
      // a*b can be transformed into 0 <= a + b - 2*p <= 1 with p in [0,1]
      // p is True if a AND b, False otherwise
      MPConstraint constraint = solver.makeConstraint(0, 1, "");
      constraint.setCoefficient(work[group3[i][0]], 1);
      constraint.setCoefficient(work[group3[i][1]], 1);
      MPVariable p = solver.makeBoolVar("g3_p" + i);
      constraint.setCoefficient(p, -2);

      constraintG3.setCoefficient(p, 1);
    }

    // Objective
    MPObjective objective = solver.objective();
    for (int worker : allWorkers) {
      for (int task : allTasks) {
        objective.setCoefficient(x[worker][task], costs[worker][task]);
      }
    }
    objective.setMinimization();

    // Solve
    MPSolver.ResultStatus resultStatus = solver.solve();

    // Print solution.
    // Check that the problem has a feasible solution.
    if (resultStatus == MPSolver.ResultStatus.OPTIMAL
        || resultStatus == MPSolver.ResultStatus.FEASIBLE) {
      System.out.println("Total cost: " + objective.value() + "\n");
      for (int worker : allWorkers) {
        for (int task : allTasks) {
          // Test if x[i][j] is 0 or 1 (with tolerance for floating point
          // arithmetic).
          if (x[worker][task].solutionValue() > 0.5) {
            System.out.println("Worker " + worker + " assigned to task " + task
                + ".  Cost: " + costs[worker][task]);
          }
        }
      }
    } else {
      System.err.println("No solution found.");
    }
  }

  private AssignmentGroupsMip() {}
}

C#

using System;
using System.Collections.Generic;
using System.Linq;
using Google.OrTools.LinearSolver;

public class AssignmentGroupsMip
{
    static void Main()
    {
        // Data.
        int[,] costs = {
            { 90, 76, 75, 70, 50, 74 },    { 35, 85, 55, 65, 48, 101 }, { 125, 95, 90, 105, 59, 120 },
            { 45, 110, 95, 115, 104, 83 }, { 60, 105, 80, 75, 59, 62 }, { 45, 65, 110, 95, 47, 31 },
            { 38, 51, 107, 41, 69, 99 },   { 47, 85, 57, 71, 92, 77 },  { 39, 63, 97, 49, 118, 56 },
            { 47, 101, 71, 60, 88, 109 },  { 17, 39, 103, 64, 61, 92 }, { 101, 45, 83, 59, 92, 27 },
        };
        int numWorkers = costs.GetLength(0);
        int numTasks = costs.GetLength(1);

        int[] allWorkers = Enumerable.Range(0, numWorkers).ToArray();
        int[] allTasks = Enumerable.Range(0, numTasks).ToArray();

        // Allowed groups of workers:
        int[,] group1 = {
            // group of worker 0-3
            { 2, 3 }, { 1, 3 }, { 1, 2 }, { 0, 1 }, { 0, 2 },
        };

        int[,] group2 = {
            // group of worker 4-7
            { 6, 7 }, { 5, 7 }, { 5, 6 }, { 4, 5 }, { 4, 7 },
        };

        int[,] group3 = {
            // group of worker 8-11
            { 10, 11 }, { 9, 11 }, { 9, 10 }, { 8, 10 }, { 8, 11 },
        };

        // Solver.
        Solver solver = Solver.CreateSolver("SCIP");

        // Variables.
        // x[i, j] is an array of 0-1 variables, which will be 1
        // if worker i is assigned to task j.
        Variable[,] x = new Variable[numWorkers, numTasks];
        foreach (int worker in allWorkers)
        {
            foreach (int task in allTasks)
            {
                x[worker, task] = solver.MakeBoolVar($"x[{worker},{task}]");
            }
        }

        // Constraints
        // Each worker is assigned to at most one task.
        foreach (int worker in allWorkers)
        {
            Constraint constraint = solver.MakeConstraint(0, 1, "");
            foreach (int task in allTasks)
            {
                constraint.SetCoefficient(x[worker, task], 1);
            }
        }
        // Each task is assigned to exactly one worker.
        foreach (int task in allTasks)
        {
            Constraint constraint = solver.MakeConstraint(1, 1, "");
            foreach (int worker in allWorkers)
            {
                constraint.SetCoefficient(x[worker, task], 1);
            }
        }

        // Create variables for each worker, indicating whether they work on some task.
        Variable[] work = new Variable[numWorkers];
        foreach (int worker in allWorkers)
        {
            work[worker] = solver.MakeBoolVar($"work[{worker}]");
        }

        foreach (int worker in allWorkers)
        {
            Variable[] vars = new Variable[numTasks];
            foreach (int task in allTasks)
            {
                vars[task] = x[worker, task];
            }
            solver.Add(work[worker] == LinearExprArrayHelper.Sum(vars));
        }

        // Group1
        Constraint constraint_g1 = solver.MakeConstraint(1, 1, "");
        for (int i = 0; i < group1.GetLength(0); ++i)
        {
            // a*b can be transformed into 0 <= a + b - 2*p <= 1 with p in [0,1]
            // p is True if a AND b, False otherwise
            Constraint constraint = solver.MakeConstraint(0, 1, "");
            constraint.SetCoefficient(work[group1[i, 0]], 1);
            constraint.SetCoefficient(work[group1[i, 1]], 1);
            Variable p = solver.MakeBoolVar($"g1_p{i}");
            constraint.SetCoefficient(p, -2);

            constraint_g1.SetCoefficient(p, 1);
        }
        // Group2
        Constraint constraint_g2 = solver.MakeConstraint(1, 1, "");
        for (int i = 0; i < group2.GetLength(0); ++i)
        {
            // a*b can be transformed into 0 <= a + b - 2*p <= 1 with p in [0,1]
            // p is True if a AND b, False otherwise
            Constraint constraint = solver.MakeConstraint(0, 1, "");
            constraint.SetCoefficient(work[group2[i, 0]], 1);
            constraint.SetCoefficient(work[group2[i, 1]], 1);
            Variable p = solver.MakeBoolVar($"g2_p{i}");
            constraint.SetCoefficient(p, -2);

            constraint_g2.SetCoefficient(p, 1);
        }
        // Group3
        Constraint constraint_g3 = solver.MakeConstraint(1, 1, "");
        for (int i = 0; i < group3.GetLength(0); ++i)
        {
            // a*b can be transformed into 0 <= a + b - 2*p <= 1 with p in [0,1]
            // p is True if a AND b, False otherwise
            Constraint constraint = solver.MakeConstraint(0, 1, "");
            constraint.SetCoefficient(work[group3[i, 0]], 1);
            constraint.SetCoefficient(work[group3[i, 1]], 1);
            Variable p = solver.MakeBoolVar($"g3_p{i}");
            constraint.SetCoefficient(p, -2);

            constraint_g3.SetCoefficient(p, 1);
        }

        // Objective
        Objective objective = solver.Objective();
        foreach (int worker in allWorkers)
        {
            foreach (int task in allTasks)
            {
                objective.SetCoefficient(x[worker, task], costs[worker, task]);
            }
        }
        objective.SetMinimization();

        // Solve
        Solver.ResultStatus resultStatus = solver.Solve();

        // Print solution.
        // Check that the problem has a feasible solution.
        if (resultStatus == Solver.ResultStatus.OPTIMAL || resultStatus == Solver.ResultStatus.FEASIBLE)
        {
            Console.WriteLine($"Total cost: {solver.Objective().Value()}\n");
            foreach (int worker in allWorkers)
            {
                foreach (int task in allTasks)
                {
                    // Test if x[i, j] is 0 or 1 (with tolerance for floating point
                    // arithmetic).
                    if (x[worker, task].SolutionValue() > 0.5)
                    {
                        Console.WriteLine($"Worker {worker} assigned to task {task}. Cost: {costs[worker, task]}");
                    }
                }
            }
        }
        else
        {
            Console.WriteLine("No solution found.");
        }
    }
}

Solutions times

The solution times for the two solvers are as follows:

  • CP-SAT: 0.0113 seconds
  • MIP: 0.3281 seconds

CP-SAT is significantly faster than MIP for this problem.