Secara default, pengurangan yang diterapkan ke gambar akan memberi bobot input sesuai dengan nilai mask.
      Hal ini relevan dalam konteks piksel pecahan yang dibuat melalui operasi seperti
      clip().  Sesuaikan perilaku ini dengan memanggil unweighted() pada
      reducer.  Menggunakan pengurangan tanpa bobot akan memaksa semua piksel dalam region memiliki bobot
      yang sama.  Contoh berikut menggambarkan bagaimana bobot piksel dapat memengaruhi output
      reducer:
Editor Kode (JavaScript)
// Load a Landsat 8 input image. var image = ee.Image('LANDSAT/LC08/C02/T1/LC08_044034_20140318'); // Create an arbitrary region. var geometry = ee.Geometry.Rectangle(-122.496, 37.532, -121.554, 37.538); // Make an NDWI image. It will have one band named 'nd'. var ndwi = image.normalizedDifference(['B3', 'B5']); // Compute the weighted mean of the NDWI image clipped to the region. var weighted = ndwi.clip(geometry) .reduceRegion({ reducer: ee.Reducer.mean(), geometry: geometry, scale: 30}) .get('nd'); // Compute the UN-weighted mean of the NDWI image clipped to the region. var unweighted = ndwi.clip(geometry) .reduceRegion({ reducer: ee.Reducer.mean().unweighted(), geometry: geometry, scale: 30}) .get('nd'); // Observe the difference between weighted and unweighted reductions. print('weighted:', weighted); print('unweighted', unweighted);
import ee import geemap.core as geemap
Colab (Python)
# Load a Landsat 8 input image. image = ee.Image('LANDSAT/LC08/C02/T1/LC08_044034_20140318') # Create an arbitrary region. geometry = ee.Geometry.Rectangle(-122.496, 37.532, -121.554, 37.538) # Make an NDWI image. It will have one band named 'nd'. ndwi = image.normalizedDifference(['B3', 'B5']) # Compute the weighted mean of the NDWI image clipped to the region. weighted = ( ndwi.clip(geometry) .reduceRegion(reducer=ee.Reducer.mean(), geometry=geometry, scale=30) .get('nd') ) # Compute the UN-weighted mean of the NDWI image clipped to the region. unweighted = ( ndwi.clip(geometry) .reduceRegion( reducer=ee.Reducer.mean().unweighted(), geometry=geometry, scale=30 ) .get('nd') ) # Observe the difference between weighted and unweighted reductions. display('weighted:', weighted) display('unweighted', unweighted)
Perbedaan hasil disebabkan oleh piksel di tepi region yang menerima bobot
      satu sebagai hasil dari memanggil unweighted() pada reducer.
Untuk mendapatkan output berbobot secara eksplisit, sebaiknya tetapkan bobot secara eksplisit dengan splitWeights() yang dipanggil di pengurangan.  Pengurang yang diubah oleh
      splitWeights() memerlukan dua input, dengan input kedua adalah bobot.  Contoh
      berikut mengilustrasikan splitWeights() dengan menghitung rata-rata tertimbang
      Normalized Difference Vegetation Index (NDVI) di suatu wilayah, dengan bobot yang diberikan oleh
      skor awan (semakin mendung, semakin rendah bobotnya):
Editor Kode (JavaScript)
// Load an input Landsat 8 image. var image = ee.Image('LANDSAT/LC08/C02/T1_TOA/LC08_186059_20130419'); // Compute cloud score and reverse it such that the highest // weight (100) is for the least cloudy pixels. var cloudWeight = ee.Image(100).subtract( ee.Algorithms.Landsat.simpleCloudScore(image).select(['cloud'])); // Compute NDVI and add the cloud weight band. var ndvi = image.normalizedDifference(['B5', 'B4']).addBands(cloudWeight); // Define an arbitrary region in a cloudy area. var region = ee.Geometry.Rectangle(9.9069, 0.5981, 10.5, 0.9757); // Use a mean reducer. var reducer = ee.Reducer.mean(); // Compute the unweighted mean. var unweighted = ndvi.select(['nd']).reduceRegion(reducer, region, 30); // compute mean weighted by cloudiness. var weighted = ndvi.reduceRegion(reducer.splitWeights(), region, 30); // Observe the difference as a result of weighting by cloudiness. print('unweighted:', unweighted); print('weighted:', weighted);
import ee import geemap.core as geemap
Colab (Python)
# Load an input Landsat 8 image. image = ee.Image('LANDSAT/LC08/C02/T1_TOA/LC08_186059_20130419') # Compute cloud score and reverse it such that the highest # weight (100) is for the least cloudy pixels. cloud_weight = ee.Image(100).subtract( ee.Algorithms.Landsat.simpleCloudScore(image).select(['cloud']) ) # Compute NDVI and add the cloud weight band. ndvi = image.normalizedDifference(['B5', 'B4']).addBands(cloud_weight) # Define an arbitrary region in a cloudy area. region = ee.Geometry.Rectangle(9.9069, 0.5981, 10.5, 0.9757) # Use a mean reducer. reducer = ee.Reducer.mean() # Compute the unweighted mean. unweighted = ndvi.select(['nd']).reduceRegion(reducer, region, 30) # compute mean weighted by cloudiness. weighted = ndvi.reduceRegion(reducer.splitWeights(), region, 30) # Observe the difference as a result of weighting by cloudiness. display('unweighted:', unweighted) display('weighted:', weighted)
Perhatikan bahwa cloudWeight harus ditambahkan sebagai band sebelum memanggil
      reduceRegion().  Hasilnya menunjukkan bahwa estimasi NDVI rata-rata
      lebih tinggi sebagai akibat dari penurunan bobot piksel berawan.