在 Earth Engine 中,從向量插補至光柵會從 FeatureCollection
建立 Image
。具體來說,Earth Engine 會使用地圖項目屬性中儲存的數值資料,對地圖項目以外的新位置進行內插值。內插結果會產生連續的 Image
,內插值會一直延伸到指定的距離。
反比率加權內插
Earth Engine 中的反距離加權 (IDW) 函式是以 Basso 等人 (1999) 所述的方法為依據。在反比距離上,以衰減因子 (gamma
) 的形式新增額外的控制參數。其他參數包括要內插的屬性平均值和標準差,以及內插的最大範圍距離。以下範例會建立
甲烷濃度的內插表面,以填補原始光柵資料集的空間空隙。FeatureCollection
是透過取樣兩週的甲烷複合物產生。
// Import two weeks of S5P methane and composite by mean. var ch4 = ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_CH4') .select('CH4_column_volume_mixing_ratio_dry_air') .filterDate('2019-08-01', '2019-08-15') .mean() .rename('ch4'); // Define an area to perform interpolation over. var aoi = ee.Geometry.Polygon( [[[-95.68487605978851, 43.09844605027055], [-95.68487605978851, 37.39358590079781], [-87.96148738791351, 37.39358590079781], [-87.96148738791351, 43.09844605027055]]], null, false); // Sample the methane composite to generate a FeatureCollection. var samples = ch4.addBands(ee.Image.pixelLonLat()) .sample({region: aoi, numPixels: 1500, scale:1000, projection: 'EPSG:4326'}) .map(function(sample) { var lat = sample.get('latitude'); var lon = sample.get('longitude'); var ch4 = sample.get('ch4'); return ee.Feature(ee.Geometry.Point([lon, lat]), {ch4: ch4}); }); // Combine mean and standard deviation reducers for efficiency. var combinedReducer = ee.Reducer.mean().combine({ reducer2: ee.Reducer.stdDev(), sharedInputs: true}); // Estimate global mean and standard deviation from the points. var stats = samples.reduceColumns({ reducer: combinedReducer, selectors: ['ch4']}); // Do the interpolation, valid to 70 kilometers. var interpolated = samples.inverseDistance({ range: 7e4, propertyName: 'ch4', mean: stats.get('mean'), stdDev: stats.get('stdDev'), gamma: 0.3}); // Define visualization arguments. var band_viz = { min: 1800, max: 1900, palette: ['0D0887', '5B02A3', '9A179B', 'CB4678', 'EB7852', 'FBB32F', 'F0F921']}; // Display to map. Map.centerObject(aoi, 7); Map.addLayer(ch4, band_viz, 'CH4'); Map.addLayer(interpolated, band_viz, 'CH4 Interpolated');
請注意,根據 range
參數的指定,插補作業只會在距離最近測量站 70 公里的範圍內執行。
Kriging
Kriging 是一種內插方法,會使用模擬的半變異數估計值,建立內插值的圖片,這是已知位置的值最佳組合。Kriging 估計器需要參數,用於描述與已知資料點相符的 半變異函數形狀。這些參數請見圖 1。

nugget
、sill
和 range
參數。以下範例會在隨機位置取樣海表溫度 (SST) 圖片,然後使用克里金法從樣本內插 SST:
// Load an image of sea surface temperature (SST). var sst = ee.Image('NOAA/AVHRR_Pathfinder_V52_L3/20120802025048') .select('sea_surface_temperature') .rename('sst') .divide(100); // Define a geometry in which to sample points var geometry = ee.Geometry.Rectangle([-65.60, 31.75, -52.18, 43.12]); // Sample the SST image at 1000 random locations. var samples = sst.addBands(ee.Image.pixelLonLat()) .sample({region: geometry, numPixels: 1000}) .map(function(sample) { var lat = sample.get('latitude'); var lon = sample.get('longitude'); var sst = sample.get('sst'); return ee.Feature(ee.Geometry.Point([lon, lat]), {sst: sst}); }); // Interpolate SST from the sampled points. var interpolated = samples.kriging({ propertyName: 'sst', shape: 'exponential', range: 100 * 1000, sill: 1.0, nugget: 0.1, maxDistance: 100 * 1000, reducer: 'mean', }); var colors = ['00007F', '0000FF', '0074FF', '0DFFEA', '8CFF41', 'FFDD00', 'FF3700', 'C30000', '790000']; var vis = {min:-3, max:40, palette: colors}; Map.setCenter(-60.029, 36.457, 5); Map.addLayer(interpolated, vis, 'Interpolated'); Map.addLayer(sst, vis, 'Raw SST'); Map.addLayer(samples, {}, 'Samples', false);
maxDistance
參數會指定要執行插補的鄰域大小。尺寸越大,輸出內容就越流暢,但運算速度就越慢。