כפי שמתואר בקטע 'תחילת העבודה' ובקטע 'מידע על ImageCollection', ב-Earth Engine יש מגוון שיטות נוחות לסינון של אוספי תמונות.
באופן ספציפי, imageCollection.filterDate()
ו-imageCollection.filterBounds()
מטפלים בתרחישים נפוצים רבים לדוגמה. לסינון למטרות כלליות, משתמשים ב-imageCollection.filter()
עם ee.Filter
כארגומנט. בדוגמה הבאה מוצגות גם שיטות נוחות וגם filter()
כדי לזהות ולהסיר תמונות עם כיסוי עננים גבוה מ-ImageCollection
.
Code Editor (JavaScript)
// Load Landsat 8 data, filter by date, month, and bounds. var collection = ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA') .filterDate('2015-01-01', '2018-01-01') // Three years of data .filter(ee.Filter.calendarRange(11, 2, 'month')) // Only Nov-Feb observations .filterBounds(ee.Geometry.Point(25.8544, -18.08874)); // Intersecting ROI // Also filter the collection by the CLOUD_COVER property. var filtered = collection.filter(ee.Filter.eq('CLOUD_COVER', 0)); // Create two composites to check the effect of filtering by CLOUD_COVER. var badComposite = collection.mean(); var goodComposite = filtered.mean(); // Display the composites. Map.setCenter(25.8544, -18.08874, 13); Map.addLayer(badComposite, {bands: ['B3', 'B2', 'B1'], min: 0.05, max: 0.35, gamma: 1.1}, 'Bad composite'); Map.addLayer(goodComposite, {bands: ['B3', 'B2', 'B1'], min: 0.05, max: 0.35, gamma: 1.1}, 'Good composite');
import ee import geemap.core as geemap
Colab (Python)
# Load Landsat 8 data, filter by date, month, and bounds. collection = ( ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA') # Three years of data .filterDate('2015-01-01', '2018-01-01') # Only Nov-Feb observations .filter(ee.Filter.calendarRange(11, 2, 'month')) # Intersecting ROI .filterBounds(ee.Geometry.Point(25.8544, -18.08874)) ) # Also filter the collection by the CLOUD_COVER property. filtered = collection.filter(ee.Filter.eq('CLOUD_COVER', 0)) # Create two composites to check the effect of filtering by CLOUD_COVER. bad_composite = collection.mean() good_composite = filtered.mean() # Display the composites. m = geemap.Map() m.set_center(25.8544, -18.08874, 13) m.add_layer( bad_composite, {'bands': ['B3', 'B2', 'B1'], 'min': 0.05, 'max': 0.35, 'gamma': 1.1}, 'Bad composite', ) m.add_layer( good_composite, {'bands': ['B3', 'B2', 'B1'], 'min': 0.05, 'max': 0.35, 'gamma': 1.1}, 'Good composite', ) m