همانطور که در بخش Get Started و بخش ImageCollection اطلاعات نشان داده شده است، Earth Engine انواع روشهای راحت را برای فیلتر کردن مجموعههای تصاویر ارائه میکند. به طور خاص، بسیاری از موارد استفاده رایج توسط imageCollection.filterDate()
و imageCollection.filterBounds()
مدیریت می شوند. برای فیلتر کردن اهداف عمومی، از imageCollection.filter()
با ee.Filter
به عنوان آرگومان استفاده کنید. مثال زیر هم روشهای راحت و هم filter()
را برای شناسایی و حذف تصاویر با پوشش ابری بالا از ImageCollection
نشان میدهد.
ویرایشگر کد (جاوا اسکریپت)
// Load Landsat 8 data, filter by date, month, and bounds. var collection = ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA') .filterDate('2015-01-01', '2018-01-01') // Three years of data .filter(ee.Filter.calendarRange(11, 2, 'month')) // Only Nov-Feb observations .filterBounds(ee.Geometry.Point(25.8544, -18.08874)); // Intersecting ROI // Also filter the collection by the CLOUD_COVER property. var filtered = collection.filter(ee.Filter.eq('CLOUD_COVER', 0)); // Create two composites to check the effect of filtering by CLOUD_COVER. var badComposite = collection.mean(); var goodComposite = filtered.mean(); // Display the composites. Map.setCenter(25.8544, -18.08874, 13); Map.addLayer(badComposite, {bands: ['B3', 'B2', 'B1'], min: 0.05, max: 0.35, gamma: 1.1}, 'Bad composite'); Map.addLayer(goodComposite, {bands: ['B3', 'B2', 'B1'], min: 0.05, max: 0.35, gamma: 1.1}, 'Good composite');
import ee import geemap.core as geemap
کولب (پایتون)
# Load Landsat 8 data, filter by date, month, and bounds. collection = ( ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA') # Three years of data .filterDate('2015-01-01', '2018-01-01') # Only Nov-Feb observations .filter(ee.Filter.calendarRange(11, 2, 'month')) # Intersecting ROI .filterBounds(ee.Geometry.Point(25.8544, -18.08874)) ) # Also filter the collection by the CLOUD_COVER property. filtered = collection.filter(ee.Filter.eq('CLOUD_COVER', 0)) # Create two composites to check the effect of filtering by CLOUD_COVER. bad_composite = collection.mean() good_composite = filtered.mean() # Display the composites. m = geemap.Map() m.set_center(25.8544, -18.08874, 13) m.add_layer( bad_composite, {'bands': ['B3', 'B2', 'B1'], 'min': 0.05, 'max': 0.35, 'gamma': 1.1}, 'Bad composite', ) m.add_layer( good_composite, {'bands': ['B3', 'B2', 'B1'], 'min': 0.05, 'max': 0.35, 'gamma': 1.1}, 'Good composite', ) m