Seperti yang diilustrasikan di bagian Mulai
dan bagian Informasi ImageCollection, Earth Engine menyediakan berbagai metode praktis untuk memfilter koleksi gambar.
Secara khusus, banyak kasus penggunaan umum ditangani oleh imageCollection.filterDate(),
dan imageCollection.filterBounds(). Untuk pemfilteran tujuan umum, gunakan
imageCollection.filter() dengan ee.Filter sebagai argumen. Contoh
berikut menunjukkan metode praktis dan filter()
untuk mengidentifikasi dan menghapus gambar dengan cakupan awan yang tinggi dari ImageCollection.
Editor Kode (JavaScript)
// Load Landsat 8 data, filter by date, month, and bounds. var collection = ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA') .filterDate('2015-01-01', '2018-01-01') // Three years of data .filter(ee.Filter.calendarRange(11, 2, 'month')) // Only Nov-Feb observations .filterBounds(ee.Geometry.Point(25.8544, -18.08874)); // Intersecting ROI // Also filter the collection by the CLOUD_COVER property. var filtered = collection.filter(ee.Filter.eq('CLOUD_COVER', 0)); // Create two composites to check the effect of filtering by CLOUD_COVER. var badComposite = collection.mean(); var goodComposite = filtered.mean(); // Display the composites. Map.setCenter(25.8544, -18.08874, 13); Map.addLayer(badComposite, {bands: ['B3', 'B2', 'B1'], min: 0.05, max: 0.35, gamma: 1.1}, 'Bad composite'); Map.addLayer(goodComposite, {bands: ['B3', 'B2', 'B1'], min: 0.05, max: 0.35, gamma: 1.1}, 'Good composite');
import ee import geemap.core as geemap
Colab (Python)
# Load Landsat 8 data, filter by date, month, and bounds. collection = ( ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA') # Three years of data .filterDate('2015-01-01', '2018-01-01') # Only Nov-Feb observations .filter(ee.Filter.calendarRange(11, 2, 'month')) # Intersecting ROI .filterBounds(ee.Geometry.Point(25.8544, -18.08874)) ) # Also filter the collection by the CLOUD_COVER property. filtered = collection.filter(ee.Filter.eq('CLOUD_COVER', 0)) # Create two composites to check the effect of filtering by CLOUD_COVER. bad_composite = collection.mean() good_composite = filtered.mean() # Display the composites. m = geemap.Map() m.set_center(25.8544, -18.08874, 13) m.add_layer( bad_composite, {'bands': ['B3', 'B2', 'B1'], 'min': 0.05, 'max': 0.35, 'gamma': 1.1}, 'Bad composite', ) m.add_layer( good_composite, {'bands': ['B3', 'B2', 'B1'], 'min': 0.05, 'max': 0.35, 'gamma': 1.1}, 'Good composite', ) m