Informazioni e metadati di FeatureCollection

I metodi per ottenere informazioni dai metadati delle raccolte di elementi sono gli stessi di quelli per le raccolte di immagini. Per maggiori dettagli, consulta la sezione Informazioni e metadati della raccolta di immagini.

Aggregazione dei metadati

Puoi utilizzare le scorciatoie di aggregazione per conteggiare il numero di elementi o riepilogare un attributo:

Editor di codice (JavaScript)

// Load watersheds from a data table.
var sheds = ee.FeatureCollection('USGS/WBD/2017/HUC06')
  // Filter to the continental US.
  .filterBounds(ee.Geometry.Rectangle(-127.18, 19.39, -62.75, 51.29))
  // Convert 'areasqkm' property from string to number.
  .map(function(feature){
    var num = ee.Number.parse(feature.get('areasqkm'));
    return feature.set('areasqkm', num);
  });

// Display the table and print its first element.
Map.addLayer(sheds, {}, 'watersheds');
print('First watershed', sheds.first());

// Print the number of watersheds.
print('Count:', sheds.size());

// Print stats for an area property.
print('Area stats:', sheds.aggregate_stats('areasqkm'));

Configurazione di Python

Per informazioni sull'API Python e sull'utilizzo di geemap per lo sviluppo interattivo, consulta la pagina Ambiente Python.

import ee
import geemap.core as geemap

Colab (Python)

# Load watersheds from a data table.
sheds = (
    ee.FeatureCollection('USGS/WBD/2017/HUC06')
    # Filter to the continental US.
    .filterBounds(ee.Geometry.Rectangle(-127.18, 19.39, -62.75, 51.29))
    # Convert 'areasqkm' property from string to number.
    .map(
        lambda feature: feature.set(
            'areasqkm', ee.Number.parse(feature.get('areasqkm'))
        )
    )
)

# Display the table and print its first element.
m = geemap.Map()
m.add_layer(sheds, {}, 'watersheds')
display(m)
display('First watershed:', sheds.first())

# Print the number of watersheds.
display('Count:', sheds.size())

# Print stats for an area property.
display('Area stats:', sheds.aggregate_stats('areasqkm'))

Informazioni sulle colonne

Può essere utile conoscere i nomi e i tipi di dati delle colonne FeatureCollection (ad es. per filtrare una raccolta in base ai metadati). L'esempio seguente stampa i nomi delle colonne e i tipi di dati per una raccolta di elementi punto che rappresentano aree protette.

Editor di codice (JavaScript)

// Import a protected areas point feature collection.
var wdpa = ee.FeatureCollection("WCMC/WDPA/current/points");

// Define a function to print metadata column names and datatypes. This function
// is intended to be applied by the `evaluate` method which provides the
// function a client-side dictionary allowing the 'columns' object of the
// feature collection metadata to be subset by dot notation or bracket notation
// (`tableMetadata['columns']`).
function getCols(tableMetadata) {
  print(tableMetadata.columns);
}

// Fetch collection metadata (`.limit(0)`) and apply the
// previously defined function using `evaluate()`. The printed object is a
// dictionary where keys are column names and values are datatypes.
wdpa.limit(0).evaluate(getCols);

Configurazione di Python

Per informazioni sull'API Python e sull'utilizzo di geemap per lo sviluppo interattivo, consulta la pagina Ambiente Python.

import ee
import geemap.core as geemap

Colab (Python)

# Import a protected areas point feature collection.
wdpa = ee.FeatureCollection('WCMC/WDPA/current/points')

# Fetch collection metadata (`.limit(0)`). The printed object is a
# dictionary where keys are column names and values are datatypes.
wdpa.limit(0).getInfo()['columns']

Per strumenti di aggregazione FeatureCollection di uso più generale, consulta la pagina Ridurre una raccolta di elementi.