您可以使用 Export.table
將 FeatureCollection
匯出為 CSV、SHP (形狀檔案)、GeoJSON、KML、KMZ 或 TFRecord。FeatureCollection
可能代表向量,也可能只是資料表。在後一種情況下,集合中的地圖項目會具有空值幾何圖形。
使用某些檔案格式時,請注意以下額外限制:
- KML:匯出至 KML 檔案的
FeatureCollection
會將所有幾何圖形轉換為未投影 (WGS84) 座標。 - SHP:匯出至 Shapefile 的
FeatureCollection
必須包含具有相同幾何類型和投影的要素,且必須符合 Shapefile 大小限制。系統會將欄名稱截斷為 10 個字元以下,且不得建立重複的欄名稱。 - TFRecord:請參閱這個頁面。
至 Cloud Storage
如要將 FeatureCollection
匯出至 Cloud Storage,請使用 Export.table.toCloudStorage()
。例如,使用先前定義的 features
:
程式碼編輯器 (JavaScript)
// Make a collection of points. var features = ee.FeatureCollection([ ee.Feature(ee.Geometry.Point(30.41, 59.933), {name: 'Voronoi'}), ee.Feature(ee.Geometry.Point(-73.96, 40.781), {name: 'Thiessen'}), ee.Feature(ee.Geometry.Point(6.4806, 50.8012), {name: 'Dirichlet'}) ]); // Export a KML file to Cloud Storage. Export.table.toCloudStorage({ collection: features, description:'vectorsToCloudStorageExample', bucket: 'your-bucket-name', fileNamePrefix: 'exampleTableExport', fileFormat: 'KML' });
import ee import geemap.core as geemap
Colab (Python)
# Make a collection of points. features = ee.FeatureCollection([ ee.Feature(ee.Geometry.Point(30.41, 59.933), {'name': 'Voronoi'}), ee.Feature(ee.Geometry.Point(-73.96, 40.781), {'name': 'Thiessen'}), ee.Feature(ee.Geometry.Point(6.4806, 50.8012), {'name': 'Dirichlet'}), ]) # Export a KML file to Cloud Storage. task = ee.batch.Export.table.toCloudStorage( collection=features, description='vectorsToCloudStorageExample', bucket='your-bucket-name', fileNamePrefix='exampleTableExport', fileFormat='KML', ) task.start()
到「資產」
如要將 FeatureCollection
匯出為 Earth Engine 資產,請使用 Export.table.toAsset()
。例如,使用先前定義的 features
:
程式碼編輯器 (JavaScript)
// Export an ee.FeatureCollection as an Earth Engine asset. Export.table.toAsset({ collection: features, description:'exportToTableAssetExample', assetId: 'exampleAssetId', });
import ee import geemap.core as geemap
Colab (Python)
# Export an ee.FeatureCollection as an Earth Engine asset. task = ee.batch.Export.table.toAsset( collection=features, description='exportToTableAssetExample', assetId='projects/your-project/assets/exampleAssetId', ) task.start()
Earth Engine 表格資產的大小和形狀有幾項限制:
- 最多 1 億個地圖項目
- 最多 1,000 個屬性 (欄)
- 每個資料列的幾何圖形頂點數量上限為 100,000 個
- 每個字串值最多 100,000 個半形字元
至 BigQuery
您可以使用 Export.table.toBigQuery()
將 FeatureCollection
匯出至 BigQuery 資料表。這樣一來,您就能將 Earth Engine 資料與 BigQuery 中提供的其他資料和工具整合。詳情請參閱匯出至 BigQuery 指南。
程式碼編輯器 (JavaScript)
Export.table.toBigQuery({ collection: features, table: 'myproject.mydataset.mytable', description: 'put_my_data_in_bigquery', append: true, overwrite: false });
import ee import geemap.core as geemap
Colab (Python)
task = ee.batch.Export.table.toBigQuery( collection=features, table='myproject.mydataset.mytable', description='put_my_data_in_bigquery', append=True, overwrite=False, ) task.start()
至雲端硬碟
如要將 FeatureCollection
匯出至雲端硬碟帳戶,請使用 Export.table.toDrive()
。例如:
程式碼編輯器 (JavaScript)
// Export the FeatureCollection to a KML file. Export.table.toDrive({ collection: features, description:'vectorsToDriveExample', fileFormat: 'KML' });
import ee import geemap.core as geemap
Colab (Python)
# Export the FeatureCollection to a KML file. task = ee.batch.Export.table.toDrive( collection=features, description='vectorsToDriveExample', fileFormat='KML' ) task.start()
請注意,輸出格式已指定為 KML,以便處理地理資料 (SHP 也適合匯出含有幾何圖形的表格)。如要只匯出資料表格而沒有任何地理資訊,請以 CSV 格式匯出具有空值幾何圖形的特徵。以下示範如何使用 Export.table.toDrive()
取得可能長時間執行的縮減作業結果:
程式碼編輯器 (JavaScript)
// Load a Landsat image. var image = ee.Image('LANDSAT/LC08/C02/T1_TOA/LC08_044034_20140318'); var projection = image.select('B2').projection().getInfo(); // Create an arbitrary rectangle. var region = ee.Geometry.Rectangle(-122.2806, 37.1209, -122.0554, 37.2413); // Get a dictionary of means in the region. var means = image.reduceRegion({ reducer: ee.Reducer.mean(), geometry: region, crs: projection.crs, crsTransform: projection.transform, }); // Make a feature without geometry and set the properties to the dictionary of means. var feature = ee.Feature(null, means); // Wrap the Feature in a FeatureCollection for export. var featureCollection = ee.FeatureCollection([feature]); // Export the FeatureCollection. Export.table.toDrive({ collection: featureCollection, description: 'exportTableExample', fileFormat: 'CSV' });
import ee import geemap.core as geemap
Colab (Python)
# Load a Landsat image. image = ee.Image('LANDSAT/LC08/C02/T1_TOA/LC08_044034_20140318') projection = image.select('B2').projection().getInfo() # Create an arbitrary rectangle. region = ee.Geometry.Rectangle(-122.2806, 37.1209, -122.0554, 37.2413) # Get a dictionary of means in the region. means = image.reduceRegion( reducer=ee.Reducer.mean(), geometry=region, crs=projection['crs'], crsTransform=projection['transform'], ) # Make a feature without geometry and set the properties to the dictionary of means. feature = ee.Feature(None, means) # Wrap the Feature in a FeatureCollection for export. feature_collection = ee.FeatureCollection([feature]) # Export the FeatureCollection. task = ee.batch.Export.table.toDrive( collection=feature_collection, description='exportTableExample', fileFormat='CSV', ) task.start()
請注意,由於輸出內容中沒有幾何圖形,因此這個範例中的格式設為「CSV」。