Klasyfikacja nadzorowana

Pakiet Classifier obsługuje nadzorowaną klasyfikację za pomocą tradycyjnych algorytmów uczenia maszynowego działających w Earth Engine. Są to klasyfikatory CART, RandomForest, NaiveBayes i SVM. Ogólny przepływ pracy w przypadku klasyfikacji wygląda tak:

  1. Zbierz dane do trenowania. Zbierz cechy, które mają właściwość przechowującą znaną etykietę klasy i właściwości przechowujące wartości liczbowe predyktorów.
  2. Utwórz instancję klasyfikatora. W razie potrzeby ustaw jego parametry.
  3. Wytrenuj klasyfikator za pomocą danych treningowych.
  4. Klasyfikowanie obrazu lub kolekcji obiektów.
  5. Oszacuj błąd klasyfikacji za pomocą niezależnych danych weryfikacyjnych.

Dane treningowe to FeatureCollection z właściwością przechowującą etykietę klasy i właściwościami przechowującymi zmienne predykcyjne. Etykiety klas powinny być kolejnymi liczbami całkowitymi zaczynającymi się od 0. W razie potrzeby użyj funkcji remap(), aby przekonwertować wartości klas na kolejne liczby całkowite. Predyktory powinny być wartościami liczbowymi.

Dane treningowe lub weryfikacyjne mogą pochodzić z różnych źródeł. Aby interaktywnie zbierać dane treningowe w Earth Engine, możesz użyć narzędzi do rysowania obiektów geometrycznych (patrz sekcja narzędzi do rysowania obiektów geometrycznych na stronie edytora kodu). Możesz też zaimportować wstępnie zdefiniowane dane treningowe z zasobu tabeli Earth Engine (szczegółowe informacje znajdziesz na stronie Importowanie danych z tabeli). Pobierz klasyfikator z jednego z konstruktorów w ee.Classifier. Wytrenuj klasyfikator za pomocą classifier.train(). Sklasyfikuj Image lub FeatureCollection za pomocą classify(). W tym przykładzie użyto klasyfikatora drzew klasyfikacyjnych i regresyjnych (CART) (Breiman i in. 1984) do przewidywania 3 prostych klas:

Edytor kodu (JavaScript)

// Define a function that scales and masks Landsat 8 surface reflectance images.
function prepSrL8(image) {
  // Develop masks for unwanted pixels (fill, cloud, cloud shadow).
  var qaMask = image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 2)).eq(0);
  var saturationMask = image.select('QA_RADSAT').eq(0);

  // Apply the scaling factors to the appropriate bands.
  var getFactorImg = function(factorNames) {
    var factorList = image.toDictionary().select(factorNames).values();
    return ee.Image.constant(factorList);
  };
  var scaleImg = getFactorImg([
    'REFLECTANCE_MULT_BAND_.|TEMPERATURE_MULT_BAND_ST_B10']);
  var offsetImg = getFactorImg([
    'REFLECTANCE_ADD_BAND_.|TEMPERATURE_ADD_BAND_ST_B10']);
  var scaled = image.select('SR_B.|ST_B10').multiply(scaleImg).add(offsetImg);

  // Replace original bands with scaled bands and apply masks.
  return image.addBands(scaled, null, true)
    .updateMask(qaMask).updateMask(saturationMask);
}

// Make a cloud-free Landsat 8 surface reflectance composite.
var image = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')
  .filterDate('2021-03-01', '2021-07-01')
  .map(prepSrL8)
  .median();

// Use these bands for prediction.
var bands = ['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5',
             'SR_B6', 'SR_B7', 'ST_B10'];

// Load training points. The numeric property 'class' stores known labels.
var points = ee.FeatureCollection('GOOGLE/EE/DEMOS/demo_landcover_labels');

// This property stores the land cover labels as consecutive
// integers starting from zero.
var label = 'landcover';

// Overlay the points on the imagery to get training.
var training = image.select(bands).sampleRegions({
  collection: points,
  properties: [label],
  scale: 30
});

// Train a CART classifier with default parameters.
var trained = ee.Classifier.smileCart().train(training, label, bands);

// Classify the image with the same bands used for training.
var classified = image.select(bands).classify(trained);

// Display the inputs and the results.
Map.setCenter(-122.0877, 37.7880, 11);
Map.addLayer(image,
             {bands: ['SR_B4', 'SR_B3', 'SR_B2'], min: 0, max: 0.25},
             'image');
Map.addLayer(classified,
             {min: 0, max: 2, palette: ['orange', 'green', 'blue']},
             'classification');

Konfiguracja Pythona

Informacje o interfejsie Python API i używaniu geemap do interaktywnego programowania znajdziesz na stronie Środowisko Python.

import ee
import geemap.core as geemap

Colab (Python)

# Define a function that scales and masks Landsat 8 surface reflectance images.
def prep_sr_l8(image):
  """Scales and masks Landsat 8 surface reflectance images."""
  # Develop masks for unwanted pixels (fill, cloud, cloud shadow).
  qa_mask = image.select('QA_PIXEL').bitwiseAnd(0b11111).eq(0)
  saturation_mask = image.select('QA_RADSAT').eq(0)

  # Apply the scaling factors to the appropriate bands.
  def _get_factor_img(factor_names):
    factor_list = image.toDictionary().select(factor_names).values()
    return ee.Image.constant(factor_list)

  scale_img = _get_factor_img([
      'REFLECTANCE_MULT_BAND_.|TEMPERATURE_MULT_BAND_ST_B10'])
  offset_img = _get_factor_img([
      'REFLECTANCE_ADD_BAND_.|TEMPERATURE_ADD_BAND_ST_B10'])
  scaled = image.select('SR_B.|ST_B10').multiply(scale_img).add(offset_img)

  # Replace original bands with scaled bands and apply masks.
  return image.addBands(scaled, None, True).updateMask(
      qa_mask).updateMask(saturation_mask)


# Make a cloud-free Landsat 8 surface reflectance composite.
l8_image = (
    ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')
    .filterDate('2021-03-01', '2021-07-01')
    .map(prep_sr_l8)
    .median())

# Use these bands for prediction.
bands = ['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7', 'ST_B10']

# Load training points. The numeric property 'class' stores known labels.
points = ee.FeatureCollection('GOOGLE/EE/DEMOS/demo_landcover_labels')

# This property stores the land cover labels as consecutive
# integers starting from zero.
label = 'landcover'

# Overlay the points on the imagery to get training.
training = l8_image.select(bands).sampleRegions(
    collection=points, properties=[label], scale=30
)

# Train a CART classifier with default parameters.
trained = ee.Classifier.smileCart().train(training, label, bands)

# Classify the image with the same bands used for training.
classified = l8_image.select(bands).classify(trained)

# Display the inputs and the results.
m = geemap.Map()
m.set_center(-122.0877, 37.7880, 11)
m.add_layer(
    l8_image,
    {'bands': ['SR_B4', 'SR_B3', 'SR_B2'], 'min': 0, 'max': 0.25},
    'image',
)
m.add_layer(
    classified,
    {'min': 0, 'max': 2, 'palette': ['orange', 'green', 'blue']},
    'classification',
)
m

W tym przykładzie punkty trenowania w tabeli przechowują tylko etykietę klasy. Pamiętaj, że właściwość trenowania ('landcover') przechowuje kolejne liczby całkowite zaczynające się od 0 (w razie potrzeby użyj remap() w tabeli, aby przekształcić etykiety klas w kolejne liczby całkowite zaczynające się od zera). Zwróć też uwagę na użycie image.sampleRegions(), aby umieścić predyktory w tabeli i utworzyć zbiór danych treningowych. Aby wytrenować klasyfikator, podaj nazwę właściwości etykiety klasy i listę właściwości w tabeli treningowej, których klasyfikator powinien używać jako predyktorów. Liczba i kolejność pasm na obrazie, który ma zostać sklasyfikowany, muszą dokładnie odpowiadać kolejności listy właściwości przekazanej do classifier.train(). Użyj image.select(), aby upewnić się, że schemat klasyfikatora pasuje do obrazu.

Jeśli dane treningowe to wielokąty reprezentujące jednorodne regiony, każdy piksel w każdym wielokącie jest punktem treningowym. Do trenowania możesz używać wielokątów, jak pokazano w tym przykładzie:

Edytor kodu (JavaScript)

// Define a function that scales and masks Landsat 8 surface reflectance images.
function prepSrL8(image) {
  // Develop masks for unwanted pixels (fill, cloud, cloud shadow).
  var qaMask = image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 2)).eq(0);
  var saturationMask = image.select('QA_RADSAT').eq(0);

  // Apply the scaling factors to the appropriate bands.
  var getFactorImg = function(factorNames) {
    var factorList = image.toDictionary().select(factorNames).values();
    return ee.Image.constant(factorList);
  };
  var scaleImg = getFactorImg([
    'REFLECTANCE_MULT_BAND_.|TEMPERATURE_MULT_BAND_ST_B10']);
  var offsetImg = getFactorImg([
    'REFLECTANCE_ADD_BAND_.|TEMPERATURE_ADD_BAND_ST_B10']);
  var scaled = image.select('SR_B.|ST_B10').multiply(scaleImg).add(offsetImg);

  // Replace original bands with scaled bands and apply masks.
  return image.addBands(scaled, null, true)
    .updateMask(qaMask).updateMask(saturationMask);
}

// Make a cloud-free Landsat 8 surface reflectance composite.
var image = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')
  .filterDate('2018-01-01', '2019-01-01')
  .map(prepSrL8)
  .median();

// Use these bands for prediction.
var bands = ['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5',
             'SR_B6', 'SR_B7'];

// Manually created polygons.
var forest1 = ee.Geometry.Rectangle(-63.0187, -9.3958, -62.9793, -9.3443);
var forest2 = ee.Geometry.Rectangle(-62.8145, -9.206, -62.7688, -9.1735);
var nonForest1 = ee.Geometry.Rectangle(-62.8161, -9.5001, -62.7921, -9.4486);
var nonForest2 = ee.Geometry.Rectangle(-62.6788, -9.044, -62.6459, -8.9986);

// Make a FeatureCollection from the hand-made geometries.
var polygons = ee.FeatureCollection([
  ee.Feature(nonForest1, {'class': 0}),
  ee.Feature(nonForest2, {'class': 0}),
  ee.Feature(forest1, {'class': 1}),
  ee.Feature(forest2, {'class': 1}),
]);

// Get the values for all pixels in each polygon in the training.
var training = image.sampleRegions({
  // Get the sample from the polygons FeatureCollection.
  collection: polygons,
  // Keep this list of properties from the polygons.
  properties: ['class'],
  // Set the scale to get Landsat pixels in the polygons.
  scale: 30
});

// Create an SVM classifier with custom parameters.
var classifier = ee.Classifier.libsvm({
  kernelType: 'RBF',
  gamma: 0.5,
  cost: 10
});

// Train the classifier.
var trained = classifier.train(training, 'class', bands);

// Classify the image.
var classified = image.classify(trained);

// Display the classification result and the input image.
Map.setCenter(-62.836, -9.2399, 9);
Map.addLayer(image,
             {bands: ['SR_B4', 'SR_B3', 'SR_B2'], min: 0, max: 0.25},
             'image');
Map.addLayer(polygons, {color: 'yellow'}, 'training polygons');
Map.addLayer(classified,
             {min: 0, max: 1, palette: ['orange', 'green']},
             'deforestation');

Konfiguracja Pythona

Informacje o interfejsie Python API i używaniu geemap do interaktywnego programowania znajdziesz na stronie Środowisko Python.

import ee
import geemap.core as geemap

Colab (Python)

# Define a function that scales and masks Landsat 8 surface reflectance images.
def prep_sr_l8(image):
  # Develop masks for unwanted pixels (fill, cloud, cloud shadow).
  qa_mask = image.select('QA_PIXEL').bitwiseAnd(0b11111).eq(0)
  saturation_mask = image.select('QA_RADSAT').eq(0)

  # Apply the scaling factors to the appropriate bands.
  def _get_factor_img(factor_names):
    factor_list = image.toDictionary().select(factor_names).values()
    return ee.Image.constant(factor_list)
  scale_img = _get_factor_img([
      'REFLECTANCE_MULT_BAND_.|TEMPERATURE_MULT_BAND_ST_B10'])
  offset_img = _get_factor_img([
      'REFLECTANCE_ADD_BAND_.|TEMPERATURE_ADD_BAND_ST_B10'])
  scaled = image.select('SR_B.|ST_B10').multiply(scale_img).add(offset_img)

  # Replace original bands with scaled bands and apply masks.
  return image.addBands(scaled, None, True).updateMask(
      qa_mask).updateMask(saturation_mask)


# Make a cloud-free Landsat 8 surface reflectance composite.
l8_image = (
    ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')
    .filterDate('2018-01-01', '2019-01-01')
    .map(prep_sr_l8)
    .median())

# Use these bands for prediction.
bands = ['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7']

# Manually created polygons.
forest1 = ee.Geometry.Rectangle(-63.0187, -9.3958, -62.9793, -9.3443)
forest2 = ee.Geometry.Rectangle(-62.8145, -9.206, -62.7688, -9.1735)
non_forest1 = ee.Geometry.Rectangle(-62.8161, -9.5001, -62.7921, -9.4486)
non_forest2 = ee.Geometry.Rectangle(-62.6788, -9.044, -62.6459, -8.9986)

# Make a FeatureCollection from the hand-made geometries.
polygons = ee.FeatureCollection([
    ee.Feature(non_forest1, {'class': 0}),
    ee.Feature(non_forest1, {'class': 0}),
    ee.Feature(forest1, {'class': 1}),
    ee.Feature(forest2, {'class': 1}),
])

# Get the values for all pixels in each polygon in the training.
training = l8_image.sampleRegions(
    # Get the sample from the polygons FeatureCollection.
    collection=polygons,
    # Keep this list of properties from the polygons.
    properties=['class'],
    # Set the scale to get Landsat pixels in the polygons.
    scale=30,
)

# Create an SVM classifier with custom parameters.
classifier = ee.Classifier.libsvm(kernelType='RBF', gamma=0.5, cost=10)

# Train the classifier.
trained = classifier.train(training, 'class', bands)

# Classify the image.
classified = l8_image.classify(trained)

# Display the classification result and the input image.
m = geemap.Map()
m.set_center(-62.836, -9.2399, 9)
m.add_layer(
    l8_image,
    {'bands': ['SR_B4', 'SR_B3', 'SR_B2'], 'min': 0, 'max': 0.25},
    'image',
)
m.add_layer(polygons, {'color': 'yellow'}, 'training polygons')
m.add_layer(
    classified,
    {'min': 0, 'max': 1, 'palette': ['orange', 'green']},
    'deforestation',
)
m

W tym przykładzie użyto klasyfikatora maszyny wektorów nośnych (SVM) (Burges 1998). Pamiętaj, że SVM jest określany za pomocą zestawu parametrów niestandardowych. Bez wcześniejszych informacji o fizycznym charakterze problemu prognozowania optymalne parametry są nieznane. Wskazówki dotyczące wyboru parametrów dla SVM znajdziesz w artykule Hsu i wsp. (2003).

Tryby danych wyjściowych klasyfikatora

Metoda ee.Classifier.setOutputMode() kontroluje format wyników klasyfikacji nadzorowanej, umożliwiając strukturyzację danych wyjściowych na kilka różnych sposobów:

  • CLASSIFICATION (domyślnie): wynikiem jest numer klasy.
  • REGRESJA: dane wyjściowe to wynik standardowej regresji.
  • PROBABILITY: dane wyjściowe to prawdopodobieństwo, że klasyfikacja jest prawidłowa.
  • MULTIPROBABILITY: dane wyjściowe to tablica prawdopodobieństw, że każda klasa jest prawidłowa, uporządkowana według widzianych klas.
  • RAW: dane wyjściowe to tablica wewnętrznej reprezentacji procesu klasyfikacji. Na przykład surowe głosy w modelach z wieloma drzewami decyzyjnymi.
  • RAW_REGRESSION: dane wyjściowe to tablica wewnętrznej reprezentacji procesu regresji. Na przykład surowe prognozy wielu drzew regresji.

Obsługa tych trybów wyjściowych jest różna. W tabeli poniżej znajdziesz podsumowanie obsługiwanych trybów w przypadku poszczególnych klasyfikatorów.

Klasyfikator KLASYFIKACJA REGRESJA PROBABILITY WIELOPRAWDOPODOBIEŃSTWO RAW RAW_REGRESSION
ee.Classifier.amnhMaxent
ee.Classifier.minimumDistance
ee.Classifier.smileCart
ee.Classifier.smileGradientTreeBoost
ee.Classifier.smileKNN
ee.Classifier.smileNaiveBayes
ee.Classifier.smileRandomForest
ee.Classifier.libsvm C_SVC
ee.Classifier.libsvm NU_SVC
ee.Classifier.libsvm ONE_CLASS
ee.Classifier.libsvm EPSILON_SVR
ee.Classifier.libsvm NU_SVR

Przed wytrenowaniem klasyfikatora użyj setOutputMode(), aby zdefiniować format wyjściowy. Możesz na przykład skonfigurować klasyfikator SVM w poprzednim bloku kodu tak, aby zamiast domyślnych etykiet klasyfikacji zwracał prawdopodobieństwo:

Edytor kodu (JavaScript)

var classifier = ee.Classifier.libsvm({
  kernelType: 'RBF',
  gamma: 0.5,
  cost: 10
}).setOutputMode('PROBABILITY');

var trained = classifier.train(training, 'class', bands);

Konfiguracja Pythona

Informacje o interfejsie Python API i używaniu geemap do interaktywnego programowania znajdziesz na stronie Środowisko Python.

import ee
import geemap.core as geemap

Colab (Python)

classifier = ee.Classifier.libsvm(
    kernelType='RBF', gamma=0.5, cost=10
).setOutputMode('PROBABILITY')

trained = classifier.train(training, 'class', bands)

Ocena dokładności

Aby ocenić dokładność klasyfikatora, użyj ConfusionMatrix(Stehman 1997). W tym przykładzie użyto funkcji sample() do wygenerowania danych treningowych i weryfikacyjnych z obrazu referencyjnego MODIS oraz porównano macierze pomyłek reprezentujące dokładność trenowania i weryfikacji:

Edytor kodu (JavaScript)

// Define a region of interest.
var roi = ee.Geometry.BBox(-122.93, 36.99, -121.20, 38.16);

// Define a function that scales and masks Landsat 8 surface reflectance images.
function prepSrL8(image) {
  // Develop masks for unwanted pixels (fill, cloud, cloud shadow).
  var qaMask = image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 2)).eq(0);
  var saturationMask = image.select('QA_RADSAT').eq(0);

  // Apply the scaling factors to the appropriate bands.
  var getFactorImg = function(factorNames) {
    var factorList = image.toDictionary().select(factorNames).values();
    return ee.Image.constant(factorList);
  };
  var scaleImg = getFactorImg([
    'REFLECTANCE_MULT_BAND_.|TEMPERATURE_MULT_BAND_ST_B10']);
  var offsetImg = getFactorImg([
    'REFLECTANCE_ADD_BAND_.|TEMPERATURE_ADD_BAND_ST_B10']);
  var scaled = image.select('SR_B.|ST_B10').multiply(scaleImg).add(offsetImg);

  // Replace original bands with scaled bands and apply masks.
  return image.addBands(scaled, null, true)
    .updateMask(qaMask).updateMask(saturationMask);
}

// Make a cloud-free Landsat 8 surface reflectance composite.
var input = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')
    .filterBounds(roi)
    .filterDate('2020-03-01', '2020-07-01')
    .map(prepSrL8)
    .median()
    .setDefaultProjection('EPSG:4326', null, 30)
    .select(['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7']);

// Use MODIS land cover, IGBP classification, for training.
var modis = ee.Image('MODIS/006/MCD12Q1/2020_01_01')
    .select('LC_Type1');

// Sample the input imagery to get a FeatureCollection of training data.
var training = input.addBands(modis).sample({
  region: roi,
  numPixels: 5000,
  seed: 0
});

// Make a Random Forest classifier and train it.
var classifier = ee.Classifier.smileRandomForest(10)
    .train({
      features: training,
      classProperty: 'LC_Type1',
      inputProperties: ['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7']
    });

// Classify the input imagery.
var classified = input.classify(classifier);

// Get a confusion matrix representing resubstitution accuracy.
var trainAccuracy = classifier.confusionMatrix();
print('Resubstitution error matrix: ', trainAccuracy);
print('Training overall accuracy: ', trainAccuracy.accuracy());

// Sample the input with a different random seed to get validation data.
var validation = input.addBands(modis).sample({
  region: roi,
  numPixels: 5000,
  seed: 1
  // Filter the result to get rid of any null pixels.
}).filter(ee.Filter.notNull(input.bandNames()));

// Classify the validation data.
var validated = validation.classify(classifier);

// Get a confusion matrix representing expected accuracy.
var testAccuracy = validated.errorMatrix('LC_Type1', 'classification');
print('Validation error matrix: ', testAccuracy);
print('Validation overall accuracy: ', testAccuracy.accuracy());

// Define a palette for the IGBP classification.
var igbpPalette = [
  'aec3d4', // water
  '152106', '225129', '369b47', '30eb5b', '387242', // forest
  '6a2325', 'c3aa69', 'b76031', 'd9903d', '91af40',  // shrub, grass
  '111149', // wetlands
  'cdb33b', // croplands
  'cc0013', // urban
  '33280d', // crop mosaic
  'd7cdcc', // snow and ice
  'f7e084', // barren
  '6f6f6f'  // tundra
];

// Display the input and the classification.
Map.centerObject(roi, 10);
Map.addLayer(input.clip(roi),
             {bands: ['SR_B4', 'SR_B3', 'SR_B2'], min: 0, max: 0.25},
             'landsat');
Map.addLayer(classified.clip(roi),
             {palette: igbpPalette, min: 0, max: 17},
             'classification');

Konfiguracja Pythona

Informacje o interfejsie Python API i używaniu geemap do interaktywnego programowania znajdziesz na stronie Środowisko Python.

import ee
import geemap.core as geemap

Colab (Python)

# Define a region of interest.
roi = ee.Geometry.BBox(-122.93, 36.99, -121.20, 38.16)

# Define a function that scales and masks Landsat 8 surface reflectance images.
def prep_sr_l8(image):
  """Scales and masks Landsat 8 surface reflectance images."""
  # Develop masks for unwanted pixels (fill, cloud, cloud shadow).
  qa_mask = image.select('QA_PIXEL').bitwiseAnd(0b1111).eq(0)
  saturation_mask = image.select('QA_RADSAT').eq(0)

  # Apply the scaling factors to the appropriate bands.
  def _get_factor_img(factor_names):
    factor_list = image.toDictionary().select(factor_names).values()
    return ee.Image.constant(factor_list)

  scale_img = _get_factor_img([
      'REFLECTANCE_MULT_BAND_.|TEMPERATURE_MULT_BAND_ST_B10'])
  offset_img = _get_factor_img([
      'REFLECTANCE_ADD_BAND_.|TEMPERATURE_ADD_BAND_ST_B10'])
  scaled = image.select('SR_B.|ST_B10').multiply(scale_img).add(offset_img)

  # Replace original bands with scaled bands and apply masks.
  return image.addBands(scaled, None, True).updateMask(
      qa_mask).updateMask(saturation_mask)


# Make a cloud-free Landsat 8 surface reflectance composite.
input_image = (
    ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')
    .filterBounds(roi)
    .filterDate('2020-03-01', '2020-07-01')
    .map(prep_sr_l8)
    .median()
    .setDefaultProjection('EPSG:4326', None, 30)
    .select(['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7'])
)

# Use MODIS land cover, IGBP classification, for training.
modis = ee.Image('MODIS/006/MCD12Q1/2020_01_01').select('LC_Type1')

# Sample the input imagery to get a FeatureCollection of training data.
training = input_image.addBands(modis).sample(
    region=roi, numPixels=5000, seed=0
)

# Make a Random Forest classifier and train it.
classifier = ee.Classifier.smileRandomForest(10).train(
    features=training,
    classProperty='LC_Type1',
    inputProperties=['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7'],
)

# Classify the input imagery.
classified = input_image.classify(classifier)

# Get a confusion matrix representing resubstitution accuracy.
train_accuracy = classifier.confusionMatrix()
display('Resubstitution error matrix:', train_accuracy)
display('Training overall accuracy:', train_accuracy.accuracy())

# Sample the input with a different random seed to get validation data.
validation = (
    input_image.addBands(modis)
    .sample(
        region=roi,
        numPixels=5000,
        seed=1,
        # Filter the result to get rid of any null pixels.
    )
    .filter(ee.Filter.notNull(input_image.bandNames()))
)

# Classify the validation data.
validated = validation.classify(classifier)

# Get a confusion matrix representing expected accuracy.
test_accuracy = validated.errorMatrix('LC_Type1', 'classification')
display('Validation error matrix:', test_accuracy)
display('Validation overall accuracy:', test_accuracy.accuracy())

# Define a palette for the IGBP classification.
igbp_palette = [
    'aec3d4',  # water
    '152106', '225129', '369b47', '30eb5b', '387242',  # forest
    '6a2325', 'c3aa69', 'b76031', 'd9903d', '91af40',  # shrub, grass
    '111149',  # wetlands
    'cdb33b',  # croplands
    'cc0013',  # urban
    '33280d',  # crop mosaic
    'd7cdcc',  # snow and ice
    'f7e084',  # barren
    '6f6f6f'   # tundra
]

# Display the input and the classification with geemap in a notebook.
m = geemap.Map()
m.center_object(roi, 10)
m.add_layer(
    input_image.clip(roi),
    {'bands': ['SR_B4', 'SR_B3', 'SR_B2'], 'min': 0, 'max': 0.25},
    'landsat',
)
m.add_layer(
    classified.clip(roi),
    {'palette': igbp_palette, 'min': 0, 'max': 17},
    'classification',
)
m

W tym przykładzie użyto klasyfikatora lasu losowego (Breiman 2001) z 10 drzewami do zmniejszenia rozdzielczości danych MODIS do rozdzielczości Landsat. Metoda sample() generuje 2 losowe próbki z danych MODIS: jedną do trenowania, a drugą do weryfikacji. Próbka treningowa służy do trenowania klasyfikatora. Dokładność ponownego podstawienia w przypadku danych treningowych możesz uzyskać z classifier.confusionMatrix(). Aby uzyskać dokładność weryfikacji, sklasyfikuj dane weryfikacyjne. Spowoduje to dodanie właściwości classification do weryfikacji FeatureCollection. Wywołaj funkcję errorMatrix() na sklasyfikowanym zbiorze danych FeatureCollection, aby uzyskać macierz pomyłek reprezentującą dokładność weryfikacji (oczekiwaną).

Sprawdź dane wyjściowe, aby zobaczyć, że ogólna dokładność oszacowana na podstawie danych treningowych jest znacznie wyższa niż w przypadku danych weryfikacyjnych. Dokładność szacowana na podstawie danych treningowych jest zawyżona, ponieważ las losowy jest „dopasowany” do tych danych. Oczekiwana dokładność w przypadku nieznanych danych jest niższa, co wskazuje szacunek na podstawie danych weryfikacyjnych.

Możesz też pobrać jedną próbkę i podzielić ją za pomocą metody randomColumn() w przypadku kolekcji obiektów. Kontynuacja poprzedniego przykładu:

Edytor kodu (JavaScript)

var sample = input.addBands(modis).sample({
  region: roi,
  numPixels: 5000,
  seed: 0
});

// The randomColumn() method will add a column of uniform random
// numbers in a column named 'random' by default.
sample = sample.randomColumn();

var split = 0.7;  // Roughly 70% training, 30% testing.
var training = sample.filter(ee.Filter.lt('random', split));
var validation = sample.filter(ee.Filter.gte('random', split));

Konfiguracja Pythona

Informacje o interfejsie Python API i używaniu geemap do interaktywnego programowania znajdziesz na stronie Środowisko Python.

import ee
import geemap.core as geemap

Colab (Python)

sample = input_image.addBands(modis).sample(region=roi, numPixels=5000, seed=0)

# The randomColumn() method will add a column of uniform random
# numbers in a column named 'random' by default.
sample = sample.randomColumn()

split = 0.7  # Roughly 70% training, 30% testing.
training = sample.filter(ee.Filter.lt('random', split))
validation = sample.filter(ee.Filter.gte('random', split))

Warto też zadbać o to, aby próbki treningowe nie były skorelowane z próbkami oceny. Może to wynikać z przestrzennej autokorelacji przewidywanego zjawiska. Jednym ze sposobów wykluczenia próbek, które mogą być w ten sposób skorelowane, jest usunięcie próbek znajdujących się w określonej odległości od innych próbek. Można to zrobić za pomocą złączenia przestrzennego:

Edytor kodu (JavaScript)

// Sample the input imagery to get a FeatureCollection of training data.
var sample = input.addBands(modis).sample({
  region: roi,
  numPixels: 5000,
  seed: 0,
  geometries: true,
  tileScale: 16
});

// The randomColumn() method will add a column of uniform random
// numbers in a column named 'random' by default.
sample = sample.randomColumn();

var split = 0.7;  // Roughly 70% training, 30% testing.
var training = sample.filter(ee.Filter.lt('random', split));
print('Training size:', training.size());
var validation = sample.filter(ee.Filter.gte('random', split));

// Spatial join.
var distFilter = ee.Filter.withinDistance({
  distance: 1000,
  leftField: '.geo',
  rightField: '.geo',
  maxError: 10
});

var join = ee.Join.inverted();

// Apply the join.
training = join.apply(training, validation, distFilter);
print('Training size after spatial filtering:', training.size());

Konfiguracja Pythona

Informacje o interfejsie Python API i używaniu geemap do interaktywnego programowania znajdziesz na stronie Środowisko Python.

import ee
import geemap.core as geemap

Colab (Python)

# Sample the input imagery to get a FeatureCollection of training data.
sample = input_image.addBands(modis).sample(
    region=roi, numPixels=5000, seed=0, geometries=True, tileScale=16
)

# The randomColumn() method will add a column of uniform random
# numbers in a column named 'random' by default.
sample = sample.randomColumn()

split = 0.7  # Roughly 70% training, 30% testing.
training = sample.filter(ee.Filter.lt('random', split))
display('Training size:', training.size())
validation = sample.filter(ee.Filter.gte('random', split))

# Spatial join.
dist_filter = ee.Filter.withinDistance(
    distance=1000, leftField='.geo', rightField='.geo', maxError=10
)

join = ee.Join.inverted()

# Apply the join.
training = join.apply(training, validation, dist_filter)
display('Training size after spatial filtering:', training.size())

W poprzednim fragmencie kodu zwróć uwagę, że w sample() parametr geometries ma wartość true. Jest to konieczne, aby zachować informacje przestrzenne punktów próbkowania potrzebne do połączenia przestrzennego. Pamiętaj też, że tileScale jest ustawiona na 16. Pozwoli to uniknąć błędu „Przekroczono limit pamięci użytkownika”.

Zapisywanie klasyfikatorów

Trenowanie klasyfikatora na dużej ilości danych wejściowych może być niemożliwe w trybie interaktywnym, ponieważ dane wejściowe są zbyt duże (>99 MB) lub trenowanie trwa zbyt długo (5 minut). Użyj Export.classifier.toAsset, aby uruchomić trenowanie klasyfikatora jako zadanie wsadowe, które może trwać dłużej i wykorzystywać więcej pamięci. Klasyfikatory, których trenowanie jest kosztowne, można eksportować i ponownie wczytywać, aby uniknąć konieczności ponownego trenowania.

Edytor kodu (JavaScript)

// Using the random forest classifier defined earlier, export the random
// forest classifier as an Earth Engine asset.
var classifierAssetId = 'projects/<PROJECT-ID>/assets/upscaled_MCD12Q1_random_forest';
Export.classifier.toAsset(
  classifier,
  'Saved-random-forest-IGBP-classification',
  classifierAssetId
);

Konfiguracja Pythona

Informacje o interfejsie Python API i używaniu geemap do interaktywnego programowania znajdziesz na stronie Środowisko Python.

import ee
import geemap.core as geemap

Colab (Python)

# Using the random forest classifier defined earlier, export the random
# forest classifier as an Earth Engine asset.
classifier_asset_id = (
    'projects/<PROJECT-ID>/assets/upscaled_MCD12Q1_random_forest'
)
task = ee.batch.Export.classifier.toAsset(
    classifier, 'Saved-random-forest-IGBP-classification', classifier_asset_id
)
task.start()

Aby wczytać zapisany klasyfikator, użyj algorytmu ee.Classifier.load(), podaj wyeksportowany identyfikator klasyfikatora i używaj go tak jak każdego innego wytrenowanego klasyfikatora.

Edytor kodu (JavaScript)

// Once the classifier export finishes, we can load our saved classifier.
var savedClassifier = ee.Classifier.load(classifierAssetId);
// We can perform classification just as before with the saved classifier now.
var classified = input.classify(savedClassifier);
Map.addLayer(classified.clip(roi),
             {palette: igbpPalette, min: 0, max: 17},
             'classification');

Konfiguracja Pythona

Informacje o interfejsie Python API i używaniu geemap do interaktywnego programowania znajdziesz na stronie Środowisko Python.

import ee
import geemap.core as geemap

Colab (Python)

# Once the classifier export finishes, we can load our saved classifier.
saved_classifier = ee.Classifier.load(classifier_asset_id)
# We can perform classification just as before with the saved classifier now.
classified = input_image.classify(saved_classifier)

m = geemap.Map()
m.center_object(roi, 10)
m.add_layer(
    classified.clip(roi),
    {'palette': igbp_palette, 'min': 0, 'max': 17},
    'classification',
)
m