Paket Classifier
menangani klasifikasi terawasi dengan algoritma ML
tradisional yang berjalan di Earth Engine. Pengklasifikasi ini mencakup CART, RandomForest, NaiveBayes, dan SVM. Alur kerja umum untuk klasifikasi adalah:
- Kumpulkan data pelatihan. Kumpulkan fitur yang memiliki properti yang menyimpan label kelas yang diketahui dan properti yang menyimpan nilai numerik untuk prediktor.
- Buat instance pengklasifikasi. Tetapkan parameternya jika perlu.
- Latih pengklasifikasi menggunakan data pelatihan.
- Mengklasifikasikan gambar atau kumpulan fitur.
- Perkirakan error klasifikasi dengan data validasi independen.
Data pelatihan adalah FeatureCollection
dengan properti yang menyimpan label kelas dan properti yang menyimpan variabel prediktor. Label kelas harus berupa bilangan bulat berurutan, dimulai dari 0. Jika perlu, gunakan remap()
untuk mengonversi nilai class
menjadi bilangan bulat berurutan. Prediktor harus berupa angka.
Data pelatihan dan/atau validasi dapat berasal dari berbagai sumber. Untuk mengumpulkan data
pelatihan secara interaktif di Earth Engine, Anda dapat menggunakan alat menggambar geometri (lihat
bagian alat geometri di halaman Code Editor).
Atau, Anda dapat mengimpor data pelatihan yang telah ditentukan sebelumnya dari aset tabel Earth Engine (lihat
halaman Mengimpor Data Tabel untuk mengetahui detailnya). Dapatkan pengklasifikasi
dari salah satu konstruktor di ee.Classifier
. Latih
pengklasifikasi menggunakan classifier.train()
. Mengklasifikasikan Image
atau
FeatureCollection
menggunakan classify()
. Contoh berikut
menggunakan pengklasifikasi Classification and Regression Trees (CART)
(Breiman et al. 1984) untuk
memprediksi tiga class sederhana:
Code Editor (JavaScript)
// Define a function that scales and masks Landsat 8 surface reflectance images. function prepSrL8(image) { // Develop masks for unwanted pixels (fill, cloud, cloud shadow). var qaMask = image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 2)).eq(0); var saturationMask = image.select('QA_RADSAT').eq(0); // Apply the scaling factors to the appropriate bands. var getFactorImg = function(factorNames) { var factorList = image.toDictionary().select(factorNames).values(); return ee.Image.constant(factorList); }; var scaleImg = getFactorImg([ 'REFLECTANCE_MULT_BAND_.|TEMPERATURE_MULT_BAND_ST_B10']); var offsetImg = getFactorImg([ 'REFLECTANCE_ADD_BAND_.|TEMPERATURE_ADD_BAND_ST_B10']); var scaled = image.select('SR_B.|ST_B10').multiply(scaleImg).add(offsetImg); // Replace original bands with scaled bands and apply masks. return image.addBands(scaled, null, true) .updateMask(qaMask).updateMask(saturationMask); } // Make a cloud-free Landsat 8 surface reflectance composite. var image = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2') .filterDate('2021-03-01', '2021-07-01') .map(prepSrL8) .median(); // Use these bands for prediction. var bands = ['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7', 'ST_B10']; // Load training points. The numeric property 'class' stores known labels. var points = ee.FeatureCollection('GOOGLE/EE/DEMOS/demo_landcover_labels'); // This property stores the land cover labels as consecutive // integers starting from zero. var label = 'landcover'; // Overlay the points on the imagery to get training. var training = image.select(bands).sampleRegions({ collection: points, properties: [label], scale: 30 }); // Train a CART classifier with default parameters. var trained = ee.Classifier.smileCart().train(training, label, bands); // Classify the image with the same bands used for training. var classified = image.select(bands).classify(trained); // Display the inputs and the results. Map.setCenter(-122.0877, 37.7880, 11); Map.addLayer(image, {bands: ['SR_B4', 'SR_B3', 'SR_B2'], min: 0, max: 0.25}, 'image'); Map.addLayer(classified, {min: 0, max: 2, palette: ['orange', 'green', 'blue']}, 'classification');
import ee import geemap.core as geemap
Colab (Python)
# Define a function that scales and masks Landsat 8 surface reflectance images. def prep_sr_l8(image): """Scales and masks Landsat 8 surface reflectance images.""" # Develop masks for unwanted pixels (fill, cloud, cloud shadow). qa_mask = image.select('QA_PIXEL').bitwiseAnd(0b11111).eq(0) saturation_mask = image.select('QA_RADSAT').eq(0) # Apply the scaling factors to the appropriate bands. def _get_factor_img(factor_names): factor_list = image.toDictionary().select(factor_names).values() return ee.Image.constant(factor_list) scale_img = _get_factor_img([ 'REFLECTANCE_MULT_BAND_.|TEMPERATURE_MULT_BAND_ST_B10']) offset_img = _get_factor_img([ 'REFLECTANCE_ADD_BAND_.|TEMPERATURE_ADD_BAND_ST_B10']) scaled = image.select('SR_B.|ST_B10').multiply(scale_img).add(offset_img) # Replace original bands with scaled bands and apply masks. return image.addBands(scaled, None, True).updateMask( qa_mask).updateMask(saturation_mask) # Make a cloud-free Landsat 8 surface reflectance composite. l8_image = ( ee.ImageCollection('LANDSAT/LC08/C02/T1_L2') .filterDate('2021-03-01', '2021-07-01') .map(prep_sr_l8) .median()) # Use these bands for prediction. bands = ['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7', 'ST_B10'] # Load training points. The numeric property 'class' stores known labels. points = ee.FeatureCollection('GOOGLE/EE/DEMOS/demo_landcover_labels') # This property stores the land cover labels as consecutive # integers starting from zero. label = 'landcover' # Overlay the points on the imagery to get training. training = l8_image.select(bands).sampleRegions( collection=points, properties=[label], scale=30 ) # Train a CART classifier with default parameters. trained = ee.Classifier.smileCart().train(training, label, bands) # Classify the image with the same bands used for training. classified = l8_image.select(bands).classify(trained) # Display the inputs and the results. m = geemap.Map() m.set_center(-122.0877, 37.7880, 11) m.add_layer( l8_image, {'bands': ['SR_B4', 'SR_B3', 'SR_B2'], 'min': 0, 'max': 0.25}, 'image', ) m.add_layer( classified, {'min': 0, 'max': 2, 'palette': ['orange', 'green', 'blue']}, 'classification', ) m
Dalam contoh ini, titik pelatihan dalam tabel hanya menyimpan label kelas. Perhatikan bahwa
properti pelatihan ('landcover'
) menyimpan bilangan bulat berurutan yang dimulai dari 0
(Gunakan remap()
di
tabel Anda untuk
mengubah label kelas menjadi bilangan bulat berurutan yang dimulai dari nol jika perlu). Perhatikan juga
penggunaan image.sampleRegions()
untuk memasukkan prediktor ke dalam tabel dan
membuat set data pelatihan. Untuk melatih pengklasifikasi, tentukan nama properti label kelas
dan daftar properti dalam tabel pelatihan yang harus digunakan pengklasifikasi
untuk prediktor. Jumlah dan urutan band dalam gambar yang akan diklasifikasikan harus sama persis dengan urutan daftar properti yang diberikan ke classifier.train()
.
Gunakan image.select()
untuk memastikan skema pengklasifikasi cocok dengan gambar.
Jika data pelatihan adalah poligon yang merepresentasikan wilayah homogen, setiap piksel dalam setiap poligon adalah titik pelatihan. Anda dapat menggunakan poligon untuk melatih seperti yang diilustrasikan dalam contoh berikut:
Code Editor (JavaScript)
// Define a function that scales and masks Landsat 8 surface reflectance images. function prepSrL8(image) { // Develop masks for unwanted pixels (fill, cloud, cloud shadow). var qaMask = image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 2)).eq(0); var saturationMask = image.select('QA_RADSAT').eq(0); // Apply the scaling factors to the appropriate bands. var getFactorImg = function(factorNames) { var factorList = image.toDictionary().select(factorNames).values(); return ee.Image.constant(factorList); }; var scaleImg = getFactorImg([ 'REFLECTANCE_MULT_BAND_.|TEMPERATURE_MULT_BAND_ST_B10']); var offsetImg = getFactorImg([ 'REFLECTANCE_ADD_BAND_.|TEMPERATURE_ADD_BAND_ST_B10']); var scaled = image.select('SR_B.|ST_B10').multiply(scaleImg).add(offsetImg); // Replace original bands with scaled bands and apply masks. return image.addBands(scaled, null, true) .updateMask(qaMask).updateMask(saturationMask); } // Make a cloud-free Landsat 8 surface reflectance composite. var image = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2') .filterDate('2018-01-01', '2019-01-01') .map(prepSrL8) .median(); // Use these bands for prediction. var bands = ['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7']; // Manually created polygons. var forest1 = ee.Geometry.Rectangle(-63.0187, -9.3958, -62.9793, -9.3443); var forest2 = ee.Geometry.Rectangle(-62.8145, -9.206, -62.7688, -9.1735); var nonForest1 = ee.Geometry.Rectangle(-62.8161, -9.5001, -62.7921, -9.4486); var nonForest2 = ee.Geometry.Rectangle(-62.6788, -9.044, -62.6459, -8.9986); // Make a FeatureCollection from the hand-made geometries. var polygons = ee.FeatureCollection([ ee.Feature(nonForest1, {'class': 0}), ee.Feature(nonForest2, {'class': 0}), ee.Feature(forest1, {'class': 1}), ee.Feature(forest2, {'class': 1}), ]); // Get the values for all pixels in each polygon in the training. var training = image.sampleRegions({ // Get the sample from the polygons FeatureCollection. collection: polygons, // Keep this list of properties from the polygons. properties: ['class'], // Set the scale to get Landsat pixels in the polygons. scale: 30 }); // Create an SVM classifier with custom parameters. var classifier = ee.Classifier.libsvm({ kernelType: 'RBF', gamma: 0.5, cost: 10 }); // Train the classifier. var trained = classifier.train(training, 'class', bands); // Classify the image. var classified = image.classify(trained); // Display the classification result and the input image. Map.setCenter(-62.836, -9.2399, 9); Map.addLayer(image, {bands: ['SR_B4', 'SR_B3', 'SR_B2'], min: 0, max: 0.25}, 'image'); Map.addLayer(polygons, {color: 'yellow'}, 'training polygons'); Map.addLayer(classified, {min: 0, max: 1, palette: ['orange', 'green']}, 'deforestation');
import ee import geemap.core as geemap
Colab (Python)
# Define a function that scales and masks Landsat 8 surface reflectance images. def prep_sr_l8(image): # Develop masks for unwanted pixels (fill, cloud, cloud shadow). qa_mask = image.select('QA_PIXEL').bitwiseAnd(0b11111).eq(0) saturation_mask = image.select('QA_RADSAT').eq(0) # Apply the scaling factors to the appropriate bands. def _get_factor_img(factor_names): factor_list = image.toDictionary().select(factor_names).values() return ee.Image.constant(factor_list) scale_img = _get_factor_img([ 'REFLECTANCE_MULT_BAND_.|TEMPERATURE_MULT_BAND_ST_B10']) offset_img = _get_factor_img([ 'REFLECTANCE_ADD_BAND_.|TEMPERATURE_ADD_BAND_ST_B10']) scaled = image.select('SR_B.|ST_B10').multiply(scale_img).add(offset_img) # Replace original bands with scaled bands and apply masks. return image.addBands(scaled, None, True).updateMask( qa_mask).updateMask(saturation_mask) # Make a cloud-free Landsat 8 surface reflectance composite. l8_image = ( ee.ImageCollection('LANDSAT/LC08/C02/T1_L2') .filterDate('2018-01-01', '2019-01-01') .map(prep_sr_l8) .median()) # Use these bands for prediction. bands = ['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7'] # Manually created polygons. forest1 = ee.Geometry.Rectangle(-63.0187, -9.3958, -62.9793, -9.3443) forest2 = ee.Geometry.Rectangle(-62.8145, -9.206, -62.7688, -9.1735) non_forest1 = ee.Geometry.Rectangle(-62.8161, -9.5001, -62.7921, -9.4486) non_forest2 = ee.Geometry.Rectangle(-62.6788, -9.044, -62.6459, -8.9986) # Make a FeatureCollection from the hand-made geometries. polygons = ee.FeatureCollection([ ee.Feature(non_forest1, {'class': 0}), ee.Feature(non_forest1, {'class': 0}), ee.Feature(forest1, {'class': 1}), ee.Feature(forest2, {'class': 1}), ]) # Get the values for all pixels in each polygon in the training. training = l8_image.sampleRegions( # Get the sample from the polygons FeatureCollection. collection=polygons, # Keep this list of properties from the polygons. properties=['class'], # Set the scale to get Landsat pixels in the polygons. scale=30, ) # Create an SVM classifier with custom parameters. classifier = ee.Classifier.libsvm(kernelType='RBF', gamma=0.5, cost=10) # Train the classifier. trained = classifier.train(training, 'class', bands) # Classify the image. classified = l8_image.classify(trained) # Display the classification result and the input image. m = geemap.Map() m.set_center(-62.836, -9.2399, 9) m.add_layer( l8_image, {'bands': ['SR_B4', 'SR_B3', 'SR_B2'], 'min': 0, 'max': 0.25}, 'image', ) m.add_layer(polygons, {'color': 'yellow'}, 'training polygons') m.add_layer( classified, {'min': 0, 'max': 1, 'palette': ['orange', 'green']}, 'deforestation', ) m
Contoh ini menggunakan pengklasifikasi Support Vector Machine (SVM) (Burges 1998). Perhatikan bahwa SVM ditentukan dengan serangkaian parameter kustom. Tanpa informasi a priori tentang sifat fisik masalah prediksi, parameter optimal tidak diketahui. Lihat Hsu et al. (2003) untuk panduan umum dalam memilih parameter untuk SVM.
Mode output pengklasifikasi
Metode
ee.Classifier.setOutputMode()
mengontrol format hasil klasifikasi
yang diawasi, sehingga output dapat disusun dalam beberapa cara yang berbeda:
- KLASIFIKASI (default): Outputnya adalah nomor kelas.
- REGRESI: Output adalah hasil regresi standar.
- PROBABILITAS: Output adalah probabilitas bahwa klasifikasi sudah benar.
- MULTIPROBABILITY: Outputnya adalah array probabilitas bahwa setiap kelas benar diurutkan berdasarkan kelas yang terlihat.
- RAW: Outputnya adalah array representasi internal dari proses klasifikasi. Misalnya, suara mentah dalam model pohon keputusan ganda.
- RAW_REGRESSION: Outputnya adalah array representasi internal dari proses regresi. Misalnya, prediksi mentah dari beberapa pohon regresi.
Dukungan untuk mode output ini bervariasi. Tabel berikut merangkum mode yang didukung untuk setiap pengklasifikasi.
Pengklasifikasi | KLASIFIKASI | REGRESI | PROBABILITAS | MULTIPROBABILITAS | RAW | RAW_REGRESSION |
---|---|---|---|---|---|---|
ee.Classifier.amnhMaxent | ||||||
ee.Classifier.minimumDistance | ||||||
ee.Classifier.smileCart | ||||||
ee.Classifier.smileGradientTreeBoost | ||||||
ee.Classifier.smileKNN | ||||||
ee.Classifier.smileNaiveBayes | ||||||
ee.Classifier.smileRandomForest | ||||||
ee.Classifier.libsvm C_SVC | ||||||
ee.Classifier.libsvm NU_SVC | ||||||
ee.Classifier.libsvm ONE_CLASS | ||||||
ee.Classifier.libsvm EPSILON_SVR | ||||||
ee.Classifier.libsvm NU_SVR |
Gunakan setOutputMode()
sebelum melatih pengklasifikasi untuk menentukan format output.
Misalnya, Anda dapat mengonfigurasi pengklasifikasi SVM di blok kode sebelumnya untuk
menghasilkan probabilitas, bukan label klasifikasi default:
Code Editor (JavaScript)
var classifier = ee.Classifier.libsvm({ kernelType: 'RBF', gamma: 0.5, cost: 10 }).setOutputMode('PROBABILITY'); var trained = classifier.train(training, 'class', bands);
import ee import geemap.core as geemap
Colab (Python)
classifier = ee.Classifier.libsvm( kernelType='RBF', gamma=0.5, cost=10 ).setOutputMode('PROBABILITY') trained = classifier.train(training, 'class', bands)
Penilaian Akurasi
Untuk menilai akurasi pengklasifikasi, gunakan ConfusionMatrix
(Stehman
1997). Contoh berikut menggunakan sample()
untuk membuat data pelatihan dan
validasi dari gambar referensi MODIS dan membandingkan matriks kebingungan yang merepresentasikan
akurasi pelatihan dan validasi:
Code Editor (JavaScript)
// Define a region of interest. var roi = ee.Geometry.BBox(-122.93, 36.99, -121.20, 38.16); // Define a function that scales and masks Landsat 8 surface reflectance images. function prepSrL8(image) { // Develop masks for unwanted pixels (fill, cloud, cloud shadow). var qaMask = image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 2)).eq(0); var saturationMask = image.select('QA_RADSAT').eq(0); // Apply the scaling factors to the appropriate bands. var getFactorImg = function(factorNames) { var factorList = image.toDictionary().select(factorNames).values(); return ee.Image.constant(factorList); }; var scaleImg = getFactorImg([ 'REFLECTANCE_MULT_BAND_.|TEMPERATURE_MULT_BAND_ST_B10']); var offsetImg = getFactorImg([ 'REFLECTANCE_ADD_BAND_.|TEMPERATURE_ADD_BAND_ST_B10']); var scaled = image.select('SR_B.|ST_B10').multiply(scaleImg).add(offsetImg); // Replace original bands with scaled bands and apply masks. return image.addBands(scaled, null, true) .updateMask(qaMask).updateMask(saturationMask); } // Make a cloud-free Landsat 8 surface reflectance composite. var input = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2') .filterBounds(roi) .filterDate('2020-03-01', '2020-07-01') .map(prepSrL8) .median() .setDefaultProjection('EPSG:4326', null, 30) .select(['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7']); // Use MODIS land cover, IGBP classification, for training. var modis = ee.Image('MODIS/006/MCD12Q1/2020_01_01') .select('LC_Type1'); // Sample the input imagery to get a FeatureCollection of training data. var training = input.addBands(modis).sample({ region: roi, numPixels: 5000, seed: 0 }); // Make a Random Forest classifier and train it. var classifier = ee.Classifier.smileRandomForest(10) .train({ features: training, classProperty: 'LC_Type1', inputProperties: ['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7'] }); // Classify the input imagery. var classified = input.classify(classifier); // Get a confusion matrix representing resubstitution accuracy. var trainAccuracy = classifier.confusionMatrix(); print('Resubstitution error matrix: ', trainAccuracy); print('Training overall accuracy: ', trainAccuracy.accuracy()); // Sample the input with a different random seed to get validation data. var validation = input.addBands(modis).sample({ region: roi, numPixels: 5000, seed: 1 // Filter the result to get rid of any null pixels. }).filter(ee.Filter.notNull(input.bandNames())); // Classify the validation data. var validated = validation.classify(classifier); // Get a confusion matrix representing expected accuracy. var testAccuracy = validated.errorMatrix('LC_Type1', 'classification'); print('Validation error matrix: ', testAccuracy); print('Validation overall accuracy: ', testAccuracy.accuracy()); // Define a palette for the IGBP classification. var igbpPalette = [ 'aec3d4', // water '152106', '225129', '369b47', '30eb5b', '387242', // forest '6a2325', 'c3aa69', 'b76031', 'd9903d', '91af40', // shrub, grass '111149', // wetlands 'cdb33b', // croplands 'cc0013', // urban '33280d', // crop mosaic 'd7cdcc', // snow and ice 'f7e084', // barren '6f6f6f' // tundra ]; // Display the input and the classification. Map.centerObject(roi, 10); Map.addLayer(input.clip(roi), {bands: ['SR_B4', 'SR_B3', 'SR_B2'], min: 0, max: 0.25}, 'landsat'); Map.addLayer(classified.clip(roi), {palette: igbpPalette, min: 0, max: 17}, 'classification');
import ee import geemap.core as geemap
Colab (Python)
# Define a region of interest. roi = ee.Geometry.BBox(-122.93, 36.99, -121.20, 38.16) # Define a function that scales and masks Landsat 8 surface reflectance images. def prep_sr_l8(image): """Scales and masks Landsat 8 surface reflectance images.""" # Develop masks for unwanted pixels (fill, cloud, cloud shadow). qa_mask = image.select('QA_PIXEL').bitwiseAnd(0b1111).eq(0) saturation_mask = image.select('QA_RADSAT').eq(0) # Apply the scaling factors to the appropriate bands. def _get_factor_img(factor_names): factor_list = image.toDictionary().select(factor_names).values() return ee.Image.constant(factor_list) scale_img = _get_factor_img([ 'REFLECTANCE_MULT_BAND_.|TEMPERATURE_MULT_BAND_ST_B10']) offset_img = _get_factor_img([ 'REFLECTANCE_ADD_BAND_.|TEMPERATURE_ADD_BAND_ST_B10']) scaled = image.select('SR_B.|ST_B10').multiply(scale_img).add(offset_img) # Replace original bands with scaled bands and apply masks. return image.addBands(scaled, None, True).updateMask( qa_mask).updateMask(saturation_mask) # Make a cloud-free Landsat 8 surface reflectance composite. input_image = ( ee.ImageCollection('LANDSAT/LC08/C02/T1_L2') .filterBounds(roi) .filterDate('2020-03-01', '2020-07-01') .map(prep_sr_l8) .median() .setDefaultProjection('EPSG:4326', None, 30) .select(['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7']) ) # Use MODIS land cover, IGBP classification, for training. modis = ee.Image('MODIS/006/MCD12Q1/2020_01_01').select('LC_Type1') # Sample the input imagery to get a FeatureCollection of training data. training = input_image.addBands(modis).sample( region=roi, numPixels=5000, seed=0 ) # Make a Random Forest classifier and train it. classifier = ee.Classifier.smileRandomForest(10).train( features=training, classProperty='LC_Type1', inputProperties=['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7'], ) # Classify the input imagery. classified = input_image.classify(classifier) # Get a confusion matrix representing resubstitution accuracy. train_accuracy = classifier.confusionMatrix() display('Resubstitution error matrix:', train_accuracy) display('Training overall accuracy:', train_accuracy.accuracy()) # Sample the input with a different random seed to get validation data. validation = ( input_image.addBands(modis) .sample( region=roi, numPixels=5000, seed=1, # Filter the result to get rid of any null pixels. ) .filter(ee.Filter.notNull(input_image.bandNames())) ) # Classify the validation data. validated = validation.classify(classifier) # Get a confusion matrix representing expected accuracy. test_accuracy = validated.errorMatrix('LC_Type1', 'classification') display('Validation error matrix:', test_accuracy) display('Validation overall accuracy:', test_accuracy.accuracy()) # Define a palette for the IGBP classification. igbp_palette = [ 'aec3d4', # water '152106', '225129', '369b47', '30eb5b', '387242', # forest '6a2325', 'c3aa69', 'b76031', 'd9903d', '91af40', # shrub, grass '111149', # wetlands 'cdb33b', # croplands 'cc0013', # urban '33280d', # crop mosaic 'd7cdcc', # snow and ice 'f7e084', # barren '6f6f6f' # tundra ] # Display the input and the classification with geemap in a notebook. m = geemap.Map() m.center_object(roi, 10) m.add_layer( input_image.clip(roi), {'bands': ['SR_B4', 'SR_B3', 'SR_B2'], 'min': 0, 'max': 0.25}, 'landsat', ) m.add_layer( classified.clip(roi), {'palette': igbp_palette, 'min': 0, 'max': 17}, 'classification', ) m
Contoh ini menggunakan pengklasifikasi
(Breiman 2001)
hutan acak dengan 10 pohon untuk menurunkan skala data MODIS ke resolusi Landsat. Metode
sample()
menghasilkan dua sampel acak dari data MODIS: satu untuk
pelatihan dan satu untuk validasi. Contoh pelatihan digunakan untuk melatih pengklasifikasi.
Anda bisa mendapatkan akurasi resubstitusi pada data pelatihan dari
classifier.confusionMatrix()
. Untuk mendapatkan akurasi validasi, klasifikasikan
data validasi. Hal ini menambahkan properti classification
ke validasi
FeatureCollection
. Panggil errorMatrix()
pada
FeatureCollection
yang diklasifikasikan untuk mendapatkan matriks konfusi yang merepresentasikan akurasi
validasi (yang diharapkan).
Periksa output untuk melihat bahwa akurasi keseluruhan yang diperkirakan dari data pelatihan jauh lebih tinggi daripada data validasi. Akurasi yang diperkirakan dari data pelatihan adalah perkiraan berlebih karena hutan acak “disesuaikan” dengan data pelatihan. Akurasi yang diharapkan pada data yang tidak diketahui lebih rendah, seperti yang ditunjukkan oleh estimasi dari data validasi.
Anda juga dapat mengambil satu sampel dan mempartisinya dengan metode
randomColumn()
pada kumpulan fitur. Melanjutkan contoh sebelumnya:
Code Editor (JavaScript)
var sample = input.addBands(modis).sample({ region: roi, numPixels: 5000, seed: 0 }); // The randomColumn() method will add a column of uniform random // numbers in a column named 'random' by default. sample = sample.randomColumn(); var split = 0.7; // Roughly 70% training, 30% testing. var training = sample.filter(ee.Filter.lt('random', split)); var validation = sample.filter(ee.Filter.gte('random', split));
import ee import geemap.core as geemap
Colab (Python)
sample = input_image.addBands(modis).sample(region=roi, numPixels=5000, seed=0) # The randomColumn() method will add a column of uniform random # numbers in a column named 'random' by default. sample = sample.randomColumn() split = 0.7 # Roughly 70% training, 30% testing. training = sample.filter(ee.Filter.lt('random', split)) validation = sample.filter(ee.Filter.gte('random', split))
Anda juga dapat memastikan bahwa sampel pelatihan tidak berkorelasi dengan sampel evaluasi. Hal ini mungkin disebabkan oleh autokorelasi spasial dari fenomena yang diprediksi. Salah satu cara untuk mengecualikan sampel yang mungkin berkorelasi dengan cara ini adalah dengan menghapus sampel yang berada dalam jarak tertentu ke sampel lain. Hal ini dapat dilakukan dengan gabungan spasial:
Code Editor (JavaScript)
// Sample the input imagery to get a FeatureCollection of training data. var sample = input.addBands(modis).sample({ region: roi, numPixels: 5000, seed: 0, geometries: true, tileScale: 16 }); // The randomColumn() method will add a column of uniform random // numbers in a column named 'random' by default. sample = sample.randomColumn(); var split = 0.7; // Roughly 70% training, 30% testing. var training = sample.filter(ee.Filter.lt('random', split)); print('Training size:', training.size()); var validation = sample.filter(ee.Filter.gte('random', split)); // Spatial join. var distFilter = ee.Filter.withinDistance({ distance: 1000, leftField: '.geo', rightField: '.geo', maxError: 10 }); var join = ee.Join.inverted(); // Apply the join. training = join.apply(training, validation, distFilter); print('Training size after spatial filtering:', training.size());
import ee import geemap.core as geemap
Colab (Python)
# Sample the input imagery to get a FeatureCollection of training data. sample = input_image.addBands(modis).sample( region=roi, numPixels=5000, seed=0, geometries=True, tileScale=16 ) # The randomColumn() method will add a column of uniform random # numbers in a column named 'random' by default. sample = sample.randomColumn() split = 0.7 # Roughly 70% training, 30% testing. training = sample.filter(ee.Filter.lt('random', split)) display('Training size:', training.size()) validation = sample.filter(ee.Filter.gte('random', split)) # Spatial join. dist_filter = ee.Filter.withinDistance( distance=1000, leftField='.geo', rightField='.geo', maxError=10 ) join = ee.Join.inverted() # Apply the join. training = join.apply(training, validation, dist_filter) display('Training size after spatial filtering:', training.size())
Dalam cuplikan sebelumnya, perhatikan bahwa geometries
disetel ke true
di
sample()
. Tujuannya adalah untuk mempertahankan informasi spasial titik sampel
yang diperlukan untuk gabungan spasial. Perhatikan juga bahwa tileScale
ditetapkan ke 16
.
Hal ini dilakukan untuk menghindari error "Batas memori pengguna terlampaui".
Menyimpan Pengklasifikasi
Melatih pengklasifikasi pada sejumlah besar data input mungkin tidak dapat dilakukan secara interaktif
karena input terlalu besar (>99 MB) atau karena pelatihan membutuhkan waktu terlalu lama (5 menit).
Gunakan Export.classifier.toAsset
untuk menjalankan pelatihan pengklasifikasi sebagai tugas batch,
yang dapat berjalan lebih lama dengan lebih banyak memori. Pengklasifikasi yang mahal untuk dilatih dapat diekspor dan dimuat ulang untuk menghindari kebutuhan untuk melatih ulang.
Code Editor (JavaScript)
// Using the random forest classifier defined earlier, export the random // forest classifier as an Earth Engine asset. var classifierAssetId = 'projects/<PROJECT-ID>/assets/upscaled_MCD12Q1_random_forest'; Export.classifier.toAsset( classifier, 'Saved-random-forest-IGBP-classification', classifierAssetId );
import ee import geemap.core as geemap
Colab (Python)
# Using the random forest classifier defined earlier, export the random # forest classifier as an Earth Engine asset. classifier_asset_id = ( 'projects/<PROJECT-ID>/assets/upscaled_MCD12Q1_random_forest' ) task = ee.batch.Export.classifier.toAsset( classifier, 'Saved-random-forest-IGBP-classification', classifier_asset_id ) task.start()
Untuk memuat pengklasifikasi yang disimpan, gunakan algoritma ee.Classifier.load()
, tentukan
ID pengklasifikasi yang diekspor, dan gunakan seperti pengklasifikasi terlatih lainnya.
Code Editor (JavaScript)
// Once the classifier export finishes, we can load our saved classifier. var savedClassifier = ee.Classifier.load(classifierAssetId); // We can perform classification just as before with the saved classifier now. var classified = input.classify(savedClassifier); Map.addLayer(classified.clip(roi), {palette: igbpPalette, min: 0, max: 17}, 'classification');
import ee import geemap.core as geemap
Colab (Python)
# Once the classifier export finishes, we can load our saved classifier. saved_classifier = ee.Classifier.load(classifier_asset_id) # We can perform classification just as before with the saved classifier now. classified = input_image.classify(saved_classifier) m = geemap.Map() m.center_object(roi, 10) m.add_layer( classified.clip(roi), {'palette': igbp_palette, 'min': 0, 'max': 17}, 'classification', ) m