Dizi sıralama, görüntü bantlarının bir alt kümesini farklı bir banttaki değerlere göre azaltmayı içeren özel kalite mozaikleri elde etmek için kullanışlıdır. Aşağıdaki örnekte, veriler NDVI'ye göre sıralanır ve ardından koleksiyondaki en yüksek NDVI değerlerine sahip gözlem alt kümesinin ortalaması alınır:
Kod Düzenleyici (JavaScript)
// Define a function that scales and masks Landsat 8 surface reflectance images // and adds an NDVI band. function prepSrL8(image) { // Develop masks for unwanted pixels (fill, cloud, cloud shadow). var qaMask = image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 2)).eq(0); var saturationMask = image.select('QA_RADSAT').eq(0); // Apply the scaling factors to the appropriate bands. var opticalBands = image.select('SR_B.').multiply(0.0000275).add(-0.2); var thermalBands = image.select('ST_B.*').multiply(0.00341802).add(149.0); // Calculate NDVI. var ndvi = opticalBands.normalizedDifference(['SR_B5', 'SR_B4']) .rename('NDVI'); // Replace original bands with scaled bands, add NDVI band, and apply masks. return image.addBands(opticalBands, null, true) .addBands(thermalBands, null, true) .addBands(ndvi) .updateMask(qaMask) .updateMask(saturationMask); } // Define an arbitrary region of interest as a point. var roi = ee.Geometry.Point(-122.26032, 37.87187); // Load a Landsat 8 surface reflectance collection. var collection = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2') // Filter to get only imagery at a point of interest. .filterBounds(roi) // Filter to get only six months of data. .filterDate('2021-01-01', '2021-07-01') // Prepare images by mapping the prepSrL8 function over the collection. .map(prepSrL8) // Select the bands of interest to avoid taking up unneeded memory. .select('SR_B.|NDVI'); // Convert the collection to an array. var array = collection.toArray(); // Label of the axes. var imageAxis = 0; var bandAxis = 1; // Get the NDVI slice and the bands of interest. var bandNames = collection.first().bandNames(); var bands = array.arraySlice(bandAxis, 0, bandNames.length()); var ndvi = array.arraySlice(bandAxis, -1); // Sort by descending NDVI. var sorted = bands.arraySort(ndvi.multiply(-1)); // Get the highest 20% NDVI observations per pixel. var numImages = sorted.arrayLength(imageAxis).multiply(0.2).int(); var highestNdvi = sorted.arraySlice(imageAxis, 0, numImages); // Get the mean of the highest 20% NDVI observations by reducing // along the image axis. var mean = highestNdvi.arrayReduce({ reducer: ee.Reducer.mean(), axes: [imageAxis] }); // Turn the reduced array image into a multi-band image for display. var meanImage = mean.arrayProject([bandAxis]).arrayFlatten([bandNames]); Map.centerObject(roi, 12); Map.addLayer(meanImage, {bands: ['SR_B6', 'SR_B5', 'SR_B4'], min: 0, max: 0.4});
import ee import geemap.core as geemap
Colab (Python)
# Define a function that scales and masks Landsat 8 surface reflectance images # and adds an NDVI band. def prep_sr_l8(image): # Develop masks for unwanted pixels (fill, cloud, cloud shadow). qa_mask = image.select('QA_PIXEL').bitwiseAnd(int('11111', 2)).eq(0) saturation_mask = image.select('QA_RADSAT').eq(0) # Apply the scaling factors to the appropriate bands. optical_bands = image.select('SR_B.').multiply(0.0000275).add(-0.2) thermal_bands = image.select('ST_B.*').multiply(0.00341802).add(149.0) # Calculate NDVI. ndvi = optical_bands.normalizedDifference(['SR_B5', 'SR_B4']).rename('NDVI') # Replace the original bands with the scaled ones and apply the masks. return ( image.addBands(optical_bands, None, True) .addBands(thermal_bands, None, True) .addBands(ndvi) .updateMask(qa_mask) .updateMask(saturation_mask) ) # Define an arbitrary region of interest as a point. roi = ee.Geometry.Point(-122.26032, 37.87187) # Load a Landsat 8 surface reflectance collection. collection = ( ee.ImageCollection('LANDSAT/LC08/C02/T1_L2') # Filter to get only imagery at a point of interest. .filterBounds(roi) # Filter to get only six months of data. .filterDate('2021-01-01', '2021-07-01') # Prepare images by mapping the prep_sr_l8 function over the collection. .map(prep_sr_l8) # Select the bands of interest to avoid taking up unneeded memory. .select('SR_B.|NDVI') ) # Convert the collection to an array. array = collection.toArray() # Label of the axes. image_axis = 0 band_axis = 1 # Get the NDVI slice and the bands of interest. band_names = collection.first().bandNames() bands = array.arraySlice(band_axis, 0, band_names.length()) ndvi = array.arraySlice(band_axis, -1) # Sort by descending NDVI. sorted = bands.arraySort(ndvi.multiply(-1)) # Get the highest 20% NDVI observations per pixel. num_images = sorted.arrayLength(image_axis).multiply(0.2).int() highest_ndvi = sorted.arraySlice(image_axis, 0, num_images) # Get the mean of the highest 20% NDVI observations by reducing # along the image axis. mean = highest_ndvi.arrayReduce(reducer=ee.Reducer.mean(), axes=[image_axis]) # Turn the reduced array image into a multi-band image for display. mean_image = mean.arrayProject([band_axis]).arrayFlatten([band_names]) m = geemap.Map() m.center_object(roi, 12) m.add_layer( mean_image, {'bands': ['SR_B6', 'SR_B5', 'SR_B4'], 'min': 0, 'max': 0.4} ) m
Lineer modelleme örneğinde olduğu gibi, ilgilendiğiniz bantları bant ekseni boyunca arraySlice()
kullanarak sıralama dizininden (NDVI) ayırın. Ardından, ilgilendiğiniz bantları arraySort()
kullanarak sıralama dizine göre sıralayın. Pikseller azalan NDVI'ye göre sıralandıktan sonra, en yüksek NDVI piksellerinin% 20'sini almak için imageAxis
boyunca arraySlice()
kullanın. Son olarak, en yüksek NDVI piksellerinin ortalamasını almak için arrayReduce()
'ü imageAxis
boyunca ortalama azaltıcıyla uygulayın. Son adımda, dizi resmi görüntüleme için tekrar çok bantlı bir resme dönüştürülür.