A ordenação de matriz é útil para gerar mosaicos de qualidade personalizados que envolvem a redução de um subconjunto de bandas de imagem de acordo com os valores em uma banda diferente. O exemplo a seguir classifica por NDVI e, em seguida, recebe a média de um subconjunto de observações na coleção com os valores de NDVI mais altos:
Editor de código (JavaScript)
// Define a function that scales and masks Landsat 8 surface reflectance images // and adds an NDVI band. function prepSrL8(image) { // Develop masks for unwanted pixels (fill, cloud, cloud shadow). var qaMask = image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 2)).eq(0); var saturationMask = image.select('QA_RADSAT').eq(0); // Apply the scaling factors to the appropriate bands. var opticalBands = image.select('SR_B.').multiply(0.0000275).add(-0.2); var thermalBands = image.select('ST_B.*').multiply(0.00341802).add(149.0); // Calculate NDVI. var ndvi = opticalBands.normalizedDifference(['SR_B5', 'SR_B4']) .rename('NDVI'); // Replace original bands with scaled bands, add NDVI band, and apply masks. return image.addBands(opticalBands, null, true) .addBands(thermalBands, null, true) .addBands(ndvi) .updateMask(qaMask) .updateMask(saturationMask); } // Define an arbitrary region of interest as a point. var roi = ee.Geometry.Point(-122.26032, 37.87187); // Load a Landsat 8 surface reflectance collection. var collection = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2') // Filter to get only imagery at a point of interest. .filterBounds(roi) // Filter to get only six months of data. .filterDate('2021-01-01', '2021-07-01') // Prepare images by mapping the prepSrL8 function over the collection. .map(prepSrL8) // Select the bands of interest to avoid taking up unneeded memory. .select('SR_B.|NDVI'); // Convert the collection to an array. var array = collection.toArray(); // Label of the axes. var imageAxis = 0; var bandAxis = 1; // Get the NDVI slice and the bands of interest. var bandNames = collection.first().bandNames(); var bands = array.arraySlice(bandAxis, 0, bandNames.length()); var ndvi = array.arraySlice(bandAxis, -1); // Sort by descending NDVI. var sorted = bands.arraySort(ndvi.multiply(-1)); // Get the highest 20% NDVI observations per pixel. var numImages = sorted.arrayLength(imageAxis).multiply(0.2).int(); var highestNdvi = sorted.arraySlice(imageAxis, 0, numImages); // Get the mean of the highest 20% NDVI observations by reducing // along the image axis. var mean = highestNdvi.arrayReduce({ reducer: ee.Reducer.mean(), axes: [imageAxis] }); // Turn the reduced array image into a multi-band image for display. var meanImage = mean.arrayProject([bandAxis]).arrayFlatten([bandNames]); Map.centerObject(roi, 12); Map.addLayer(meanImage, {bands: ['SR_B6', 'SR_B5', 'SR_B4'], min: 0, max: 0.4});
import ee import geemap.core as geemap
Colab (Python)
# Define a function that scales and masks Landsat 8 surface reflectance images # and adds an NDVI band. def prep_sr_l8(image): # Develop masks for unwanted pixels (fill, cloud, cloud shadow). qa_mask = image.select('QA_PIXEL').bitwiseAnd(int('11111', 2)).eq(0) saturation_mask = image.select('QA_RADSAT').eq(0) # Apply the scaling factors to the appropriate bands. optical_bands = image.select('SR_B.').multiply(0.0000275).add(-0.2) thermal_bands = image.select('ST_B.*').multiply(0.00341802).add(149.0) # Calculate NDVI. ndvi = optical_bands.normalizedDifference(['SR_B5', 'SR_B4']).rename('NDVI') # Replace the original bands with the scaled ones and apply the masks. return ( image.addBands(optical_bands, None, True) .addBands(thermal_bands, None, True) .addBands(ndvi) .updateMask(qa_mask) .updateMask(saturation_mask) ) # Define an arbitrary region of interest as a point. roi = ee.Geometry.Point(-122.26032, 37.87187) # Load a Landsat 8 surface reflectance collection. collection = ( ee.ImageCollection('LANDSAT/LC08/C02/T1_L2') # Filter to get only imagery at a point of interest. .filterBounds(roi) # Filter to get only six months of data. .filterDate('2021-01-01', '2021-07-01') # Prepare images by mapping the prep_sr_l8 function over the collection. .map(prep_sr_l8) # Select the bands of interest to avoid taking up unneeded memory. .select('SR_B.|NDVI') ) # Convert the collection to an array. array = collection.toArray() # Label of the axes. image_axis = 0 band_axis = 1 # Get the NDVI slice and the bands of interest. band_names = collection.first().bandNames() bands = array.arraySlice(band_axis, 0, band_names.length()) ndvi = array.arraySlice(band_axis, -1) # Sort by descending NDVI. sorted = bands.arraySort(ndvi.multiply(-1)) # Get the highest 20% NDVI observations per pixel. num_images = sorted.arrayLength(image_axis).multiply(0.2).int() highest_ndvi = sorted.arraySlice(image_axis, 0, num_images) # Get the mean of the highest 20% NDVI observations by reducing # along the image axis. mean = highest_ndvi.arrayReduce(reducer=ee.Reducer.mean(), axes=[image_axis]) # Turn the reduced array image into a multi-band image for display. mean_image = mean.arrayProject([band_axis]).arrayFlatten([band_names]) m = geemap.Map() m.center_object(roi, 12) m.add_layer( mean_image, {'bands': ['SR_B6', 'SR_B5', 'SR_B4'], 'min': 0, 'max': 0.4} ) m
Como no exemplo de modelagem linear, separe as bandas de interesse do índice de classificação (NDVI) usando arraySlice()
ao longo do eixo da banda. Em seguida, classifique as bandas de interesse por
índice de classificação usando arraySort()
. Depois que os pixels forem classificados por NDVI decrescente, use arraySlice()
ao longo do imageAxis
para receber 20% dos pixels de NDVI mais altos. Por fim, aplique arrayReduce()
ao
imageAxis
com um redutor médio para obter a média dos pixels NDVI
mais altos. A etapa final converte a imagem de matriz de volta para uma imagem de várias bandas para exibição.