Penyortiran dan Pengurangan Array

Pengurutan array berguna untuk mendapatkan mosaik kualitas kustom yang melibatkan pengurangan subkumpulan band gambar sesuai dengan nilai dalam band yang berbeda. Contoh berikut mengurutkan menurut NDVI, lalu mendapatkan nilai rata-rata dari subkumpulan pengamatan dalam koleksi dengan nilai NDVI tertinggi:

Editor Kode (JavaScript)

// Define a function that scales and masks Landsat 8 surface reflectance images
// and adds an NDVI band.
function prepSrL8(image) {
  // Develop masks for unwanted pixels (fill, cloud, cloud shadow).
  var qaMask = image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 2)).eq(0);
  var saturationMask = image.select('QA_RADSAT').eq(0);

  // Apply the scaling factors to the appropriate bands.
  var opticalBands = image.select('SR_B.').multiply(0.0000275).add(-0.2);
  var thermalBands = image.select('ST_B.*').multiply(0.00341802).add(149.0);

  // Calculate NDVI.
  var ndvi = opticalBands.normalizedDifference(['SR_B5', 'SR_B4'])
      .rename('NDVI');

  // Replace original bands with scaled bands, add NDVI band, and apply masks.
  return image.addBands(opticalBands, null, true)
      .addBands(thermalBands, null, true)
      .addBands(ndvi)
      .updateMask(qaMask)
      .updateMask(saturationMask);
}

// Define an arbitrary region of interest as a point.
var roi = ee.Geometry.Point(-122.26032, 37.87187);

// Load a Landsat 8 surface reflectance collection.
var collection = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')
  // Filter to get only imagery at a point of interest.
  .filterBounds(roi)
  // Filter to get only six months of data.
  .filterDate('2021-01-01', '2021-07-01')
  // Prepare images by mapping the prepSrL8 function over the collection.
  .map(prepSrL8)
  // Select the bands of interest to avoid taking up unneeded memory.
  .select('SR_B.|NDVI');

// Convert the collection to an array.
var array = collection.toArray();

// Label of the axes.
var imageAxis = 0;
var bandAxis = 1;

// Get the NDVI slice and the bands of interest.
var bandNames = collection.first().bandNames();
var bands = array.arraySlice(bandAxis, 0, bandNames.length());
var ndvi = array.arraySlice(bandAxis, -1);

// Sort by descending NDVI.
var sorted = bands.arraySort(ndvi.multiply(-1));

// Get the highest 20% NDVI observations per pixel.
var numImages = sorted.arrayLength(imageAxis).multiply(0.2).int();
var highestNdvi = sorted.arraySlice(imageAxis, 0, numImages);

// Get the mean of the highest 20% NDVI observations by reducing
// along the image axis.
var mean = highestNdvi.arrayReduce({
  reducer: ee.Reducer.mean(),
  axes: [imageAxis]
});

// Turn the reduced array image into a multi-band image for display.
var meanImage = mean.arrayProject([bandAxis]).arrayFlatten([bandNames]);
Map.centerObject(roi, 12);
Map.addLayer(meanImage, {bands: ['SR_B6', 'SR_B5', 'SR_B4'], min: 0, max: 0.4});

Penyiapan Python

Lihat halaman Lingkungan Python untuk mengetahui informasi tentang Python API dan penggunaan geemap untuk pengembangan interaktif.

import ee
import geemap.core as geemap

Colab (Python)

# Define a function that scales and masks Landsat 8 surface reflectance images
# and adds an NDVI band.
def prep_sr_l8(image):
  # Develop masks for unwanted pixels (fill, cloud, cloud shadow).
  qa_mask = image.select('QA_PIXEL').bitwiseAnd(int('11111', 2)).eq(0)
  saturation_mask = image.select('QA_RADSAT').eq(0)

  # Apply the scaling factors to the appropriate bands.
  optical_bands = image.select('SR_B.').multiply(0.0000275).add(-0.2)
  thermal_bands = image.select('ST_B.*').multiply(0.00341802).add(149.0)

  # Calculate NDVI.
  ndvi = optical_bands.normalizedDifference(['SR_B5', 'SR_B4']).rename('NDVI')

  # Replace the original bands with the scaled ones and apply the masks.
  return (
      image.addBands(optical_bands, None, True)
      .addBands(thermal_bands, None, True)
      .addBands(ndvi)
      .updateMask(qa_mask)
      .updateMask(saturation_mask)
  )


# Define an arbitrary region of interest as a point.
roi = ee.Geometry.Point(-122.26032, 37.87187)

# Load a Landsat 8 surface reflectance collection.
collection = (
    ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')
    # Filter to get only imagery at a point of interest.
    .filterBounds(roi)
    # Filter to get only six months of data.
    .filterDate('2021-01-01', '2021-07-01')
    # Prepare images by mapping the prep_sr_l8 function over the collection.
    .map(prep_sr_l8)
    # Select the bands of interest to avoid taking up unneeded memory.
    .select('SR_B.|NDVI')
)

# Convert the collection to an array.
array = collection.toArray()

# Label of the axes.
image_axis = 0
band_axis = 1

# Get the NDVI slice and the bands of interest.
band_names = collection.first().bandNames()
bands = array.arraySlice(band_axis, 0, band_names.length())
ndvi = array.arraySlice(band_axis, -1)

# Sort by descending NDVI.
sorted = bands.arraySort(ndvi.multiply(-1))

# Get the highest 20% NDVI observations per pixel.
num_images = sorted.arrayLength(image_axis).multiply(0.2).int()
highest_ndvi = sorted.arraySlice(image_axis, 0, num_images)

# Get the mean of the highest 20% NDVI observations by reducing
# along the image axis.
mean = highest_ndvi.arrayReduce(reducer=ee.Reducer.mean(), axes=[image_axis])

# Turn the reduced array image into a multi-band image for display.
mean_image = mean.arrayProject([band_axis]).arrayFlatten([band_names])
m = geemap.Map()
m.center_object(roi, 12)
m.add_layer(
    mean_image, {'bands': ['SR_B6', 'SR_B5', 'SR_B4'], 'min': 0, 'max': 0.4}
)
m

Seperti pada contoh pemodelan linear, pisahkan band yang diinginkan dari indeks pengurutan (NDVI) menggunakan arraySlice() di sepanjang sumbu band. Kemudian, urutkan band yang diinginkan menurut indeks pengurutan menggunakan arraySort(). Setelah piksel diurutkan berdasarkan NDVI menurun, gunakan arraySlice() di sepanjang imageAxis untuk mendapatkan 20% piksel NDVI tertinggi. Terakhir, terapkan arrayReduce() di sepanjang imageAxis dengan pengurangan rata-rata untuk mendapatkan rata-rata piksel NDVI tertinggi. Langkah terakhir mengonversi gambar array kembali ke gambar multi-band untuk ditampilkan.