مرتب سازی و کاهش آرایه

مرتب‌سازی آرایه برای به دست آوردن موزاییک‌های با کیفیت سفارشی مفید است که شامل کاهش زیرمجموعه‌ای از باندهای تصویر با توجه به مقادیر در یک باند متفاوت است. مثال زیر بر اساس NDVI مرتب می‌شود، سپس میانگین زیرمجموعه‌ای از مشاهدات را در مجموعه با بالاترین مقادیر NDVI بدست می‌آورد:

ویرایشگر کد (جاوا اسکریپت)

// Define a function that scales and masks Landsat 8 surface reflectance images
// and adds an NDVI band.
function prepSrL8(image) {
  // Develop masks for unwanted pixels (fill, cloud, cloud shadow).
  var qaMask = image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 2)).eq(0);
  var saturationMask = image.select('QA_RADSAT').eq(0);

  // Apply the scaling factors to the appropriate bands.
  var opticalBands = image.select('SR_B.').multiply(0.0000275).add(-0.2);
  var thermalBands = image.select('ST_B.*').multiply(0.00341802).add(149.0);

  // Calculate NDVI.
  var ndvi = opticalBands.normalizedDifference(['SR_B5', 'SR_B4'])
      .rename('NDVI');

  // Replace original bands with scaled bands, add NDVI band, and apply masks.
  return image.addBands(opticalBands, null, true)
      .addBands(thermalBands, null, true)
      .addBands(ndvi)
      .updateMask(qaMask)
      .updateMask(saturationMask);
}

// Define an arbitrary region of interest as a point.
var roi = ee.Geometry.Point(-122.26032, 37.87187);

// Load a Landsat 8 surface reflectance collection.
var collection = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')
  // Filter to get only imagery at a point of interest.
  .filterBounds(roi)
  // Filter to get only six months of data.
  .filterDate('2021-01-01', '2021-07-01')
  // Prepare images by mapping the prepSrL8 function over the collection.
  .map(prepSrL8)
  // Select the bands of interest to avoid taking up unneeded memory.
  .select('SR_B.|NDVI');

// Convert the collection to an array.
var array = collection.toArray();

// Label of the axes.
var imageAxis = 0;
var bandAxis = 1;

// Get the NDVI slice and the bands of interest.
var bandNames = collection.first().bandNames();
var bands = array.arraySlice(bandAxis, 0, bandNames.length());
var ndvi = array.arraySlice(bandAxis, -1);

// Sort by descending NDVI.
var sorted = bands.arraySort(ndvi.multiply(-1));

// Get the highest 20% NDVI observations per pixel.
var numImages = sorted.arrayLength(imageAxis).multiply(0.2).int();
var highestNdvi = sorted.arraySlice(imageAxis, 0, numImages);

// Get the mean of the highest 20% NDVI observations by reducing
// along the image axis.
var mean = highestNdvi.arrayReduce({
  reducer: ee.Reducer.mean(),
  axes: [imageAxis]
});

// Turn the reduced array image into a multi-band image for display.
var meanImage = mean.arrayProject([bandAxis]).arrayFlatten([bandNames]);
Map.centerObject(roi, 12);
Map.addLayer(meanImage, {bands: ['SR_B6', 'SR_B5', 'SR_B4'], min: 0, max: 0.4});

راه اندازی پایتون

برای اطلاعات در مورد API پایتون و استفاده از geemap برای توسعه تعاملی به صفحه محیط پایتون مراجعه کنید.

import ee
import geemap.core as geemap

کولب (پایتون)

# Define a function that scales and masks Landsat 8 surface reflectance images
# and adds an NDVI band.
def prep_sr_l8(image):
  # Develop masks for unwanted pixels (fill, cloud, cloud shadow).
  qa_mask = image.select('QA_PIXEL').bitwiseAnd(int('11111', 2)).eq(0)
  saturation_mask = image.select('QA_RADSAT').eq(0)

  # Apply the scaling factors to the appropriate bands.
  optical_bands = image.select('SR_B.').multiply(0.0000275).add(-0.2)
  thermal_bands = image.select('ST_B.*').multiply(0.00341802).add(149.0)

  # Calculate NDVI.
  ndvi = optical_bands.normalizedDifference(['SR_B5', 'SR_B4']).rename('NDVI')

  # Replace the original bands with the scaled ones and apply the masks.
  return (
      image.addBands(optical_bands, None, True)
      .addBands(thermal_bands, None, True)
      .addBands(ndvi)
      .updateMask(qa_mask)
      .updateMask(saturation_mask)
  )


# Define an arbitrary region of interest as a point.
roi = ee.Geometry.Point(-122.26032, 37.87187)

# Load a Landsat 8 surface reflectance collection.
collection = (
    ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')
    # Filter to get only imagery at a point of interest.
    .filterBounds(roi)
    # Filter to get only six months of data.
    .filterDate('2021-01-01', '2021-07-01')
    # Prepare images by mapping the prep_sr_l8 function over the collection.
    .map(prep_sr_l8)
    # Select the bands of interest to avoid taking up unneeded memory.
    .select('SR_B.|NDVI')
)

# Convert the collection to an array.
array = collection.toArray()

# Label of the axes.
image_axis = 0
band_axis = 1

# Get the NDVI slice and the bands of interest.
band_names = collection.first().bandNames()
bands = array.arraySlice(band_axis, 0, band_names.length())
ndvi = array.arraySlice(band_axis, -1)

# Sort by descending NDVI.
sorted = bands.arraySort(ndvi.multiply(-1))

# Get the highest 20% NDVI observations per pixel.
num_images = sorted.arrayLength(image_axis).multiply(0.2).int()
highest_ndvi = sorted.arraySlice(image_axis, 0, num_images)

# Get the mean of the highest 20% NDVI observations by reducing
# along the image axis.
mean = highest_ndvi.arrayReduce(reducer=ee.Reducer.mean(), axes=[image_axis])

# Turn the reduced array image into a multi-band image for display.
mean_image = mean.arrayProject([band_axis]).arrayFlatten([band_names])
m = geemap.Map()
m.center_object(roi, 12)
m.add_layer(
    mean_image, {'bands': ['SR_B6', 'SR_B5', 'SR_B4'], 'min': 0, 'max': 0.4}
)
m

همانطور که در مثال مدلسازی خطی، باندهای مورد علاقه را از شاخص مرتب سازی (NDVI) با استفاده از arraySlice() در امتداد محور باند جدا کنید. سپس باندهای مورد علاقه را بر اساس شاخص مرتب سازی با استفاده از arraySort() مرتب کنید. پس از مرتب‌سازی پیکسل‌ها با NDVI نزولی، از arraySlice() در امتداد imageAxis استفاده کنید تا 20% از بالاترین پیکسل‌های NDVI را بدست آورید. در نهایت، arrayReduce() در امتداد imageAxis با کاهش دهنده میانگین اعمال کنید تا میانگین بالاترین پیکسل های NDVI را بدست آورید. مرحله آخر تصویر آرایه را برای نمایش به یک تصویر چند باندی تبدیل می کند.