Array dan Gambar Array

Array di Earth Engine dibuat dari daftar angka dan daftar daftar. Tingkat tingkatan menentukan jumlah dimensi. Untuk memulai dengan contoh sederhana dan termotivasi, pertimbangkan contoh Array berikut yang dibuat dari koefisien tasseled cap (TC) Landsat 8 (Baig et al., 2014):

Editor Kode (JavaScript)

// Create an Array of Tasseled Cap coefficients.
var coefficients = ee.Array([
  [0.3029, 0.2786, 0.4733, 0.5599, 0.508, 0.1872],
  [-0.2941, -0.243, -0.5424, 0.7276, 0.0713, -0.1608],
  [0.1511, 0.1973, 0.3283, 0.3407, -0.7117, -0.4559],
  [-0.8239, 0.0849, 0.4396, -0.058, 0.2013, -0.2773],
  [-0.3294, 0.0557, 0.1056, 0.1855, -0.4349, 0.8085],
  [0.1079, -0.9023, 0.4119, 0.0575, -0.0259, 0.0252],
]);

Penyiapan Python

Lihat halaman Lingkungan Python untuk mengetahui informasi tentang Python API dan penggunaan geemap untuk pengembangan interaktif.

import ee
import geemap.core as geemap

Colab (Python)

# Create an Array of Tasseled Cap coefficients.
coefficients = ee.Array([
    [0.3029, 0.2786, 0.4733, 0.5599, 0.508, 0.1872],
    [-0.2941, -0.243, -0.5424, 0.7276, 0.0713, -0.1608],
    [0.1511, 0.1973, 0.3283, 0.3407, -0.7117, -0.4559],
    [-0.8239, 0.0849, 0.4396, -0.058, 0.2013, -0.2773],
    [-0.3294, 0.0557, 0.1056, 0.1855, -0.4349, 0.8085],
    [0.1079, -0.9023, 0.4119, 0.0575, -0.0259, 0.0252],
])

Pastikan ini adalah Array 2D 6x6 menggunakan length(), yang akan menampilkan panjang setiap sumbu:

Editor Kode (JavaScript)

// Print the dimensions.
print(coefficients.length()); //    [6,6]

Penyiapan Python

Lihat halaman Lingkungan Python untuk mengetahui informasi tentang Python API dan penggunaan geemap untuk pengembangan interaktif.

import ee
import geemap.core as geemap

Colab (Python)

# Print the dimensions.
display(coefficients.length())  #    [6,6]

Tabel berikut mengilustrasikan pengaturan entri matriks di sepanjang sumbu 0 dan sumbu 1:

1 sumbu ->
012345
00,30290,27860,47330,55990,5080,1872
1-0,2941-0,243-0,54240,72760,0713-0,1608
Sumbu 020,15110,19730,32830,3407-0,7117-0,4559
3-0,82390,08490,4396-0,0580,2013-0,2773
4-0,32940,05570,10560,1855-0,43490,8085
50,1079-0,90230,41190,0575-0,02590,0252

Indeks di sebelah kiri tabel menunjukkan posisi di sepanjang sumbu 0. Elemen ke-n dalam setiap daftar pada sumbu 0 berada di posisi ke-n di sepanjang sumbu 1. Misalnya, entri pada koordinat [3,1] array adalah 0,0849. Misalkan 'kehijauan' adalah komponen TC yang diminati. Anda bisa mendapatkan sub-matriks kehijauan menggunakan slice():

Editor Kode (JavaScript)

// Get the 1x6 greenness slice, display it.
var greenness = coefficients.slice({axis: 0, start: 1, end: 2, step: 1});
print(greenness);

Penyiapan Python

Lihat halaman Lingkungan Python untuk mengetahui informasi tentang Python API dan penggunaan geemap untuk pengembangan interaktif.

import ee
import geemap.core as geemap

Colab (Python)

# Get the 1x6 greenness slice, display it.
greenness = coefficients.slice(axis=0, start=1, end=2, step=1)
display(greenness)

Matriks kehijauan 2D akan terlihat seperti ini:

[[-0.2941,-0.243,-0.5424,0.7276,0.0713,-0.1608]]
    

Perhatikan bahwa parameter start dan end dari slice() sesuai dengan indeks sumbu 0 yang ditampilkan dalam tabel (start bersifat inklusif dan end bersifat eksklusif).

Gambar Array

Untuk mendapatkan gambar kehijauan, kalikan matriks band gambar Landsat 8 dengan matriks kehijauan. Untuk melakukannya, pertama-tama konversikan gambar Landsat multi-band menjadi “Gambar Array”, dengan setiap piksel adalah Array nilai band. Contoh:

Editor Kode (JavaScript)

// Load a Landsat 8 image, select the bands of interest.
var image = ee.Image('LANDSAT/LC08/C02/T1_TOA/LC08_044034_20140318')
  .select(['B2', 'B3', 'B4', 'B5', 'B6', 'B7']);

// Make an Array Image, with a 1-D Array per pixel.
var arrayImage1D = image.toArray();

// Make an Array Image with a 2-D Array per pixel, 6x1.
var arrayImage2D = arrayImage1D.toArray(1);

Penyiapan Python

Lihat halaman Lingkungan Python untuk mengetahui informasi tentang Python API dan penggunaan geemap untuk pengembangan interaktif.

import ee
import geemap.core as geemap

Colab (Python)

# Load a Landsat 8 image, select the bands of interest.
image = ee.Image('LANDSAT/LC08/C02/T1_TOA/LC08_044034_20140318').select(
    ['B2', 'B3', 'B4', 'B5', 'B6', 'B7']
)

# Make an Array Image, with a 1-D Array per pixel.
array_image_1d = image.toArray()

# Make an Array Image with a 2-D Array per pixel, 6x1.
array_image_2d = array_image_1d.toArray(1)

Dalam contoh ini, perhatikan bahwa toArray() mengonversi image menjadi gambar array yang setiap pikselnya adalah vektor 1-D, entrinya sesuai dengan 6 nilai pada posisi yang sesuai dalam band image. Gambar array vektor 1-D yang dibuat dengan cara ini tidak memiliki konsep bentuk 2-D. Untuk melakukan operasi khusus 2-D seperti perkalian matriks, konversikan menjadi gambar array 2-D per piksel dengan toArray(1). Di setiap piksel gambar array 2D, terdapat matriks nilai band 6x1. Untuk melihatnya, pertimbangkan contoh mainan berikut:

Editor Kode (JavaScript)

var array1D = ee.Array([1, 2, 3]);              // [1,2,3]
var array2D = ee.Array.cat([array1D], 1);     // [[1],[2],[3]]

Penyiapan Python

Lihat halaman Lingkungan Python untuk mengetahui informasi tentang Python API dan penggunaan geemap untuk pengembangan interaktif.

import ee
import geemap.core as geemap

Colab (Python)

array_1d = ee.Array([1, 2, 3])  # [1,2,3]
array_2d = ee.Array.cat([array_1d], 1)  # [[1],[2],[3]]

Perhatikan bahwa vektor array1D bervariasi di sepanjang sumbu 0. Matriks array2D juga melakukannya, tetapi memiliki dimensi tambahan. Memanggil toArray(1) pada gambar array sama seperti memanggil cat(bandVector, 1) pada setiap piksel. Menggunakan gambar array 2D, kalikan kiri dengan gambar yang setiap pikselnya berisi matriks 2D koefisien kehijauan:

Editor Kode (JavaScript)

// Do a matrix multiplication: 1x6 times 6x1.
// Cast the greenness Array to an Image prior to multiplication.
var greennessArrayImage = ee.Image(greenness).matrixMultiply(arrayImage2D);

Penyiapan Python

Lihat halaman Lingkungan Python untuk mengetahui informasi tentang Python API dan penggunaan geemap untuk pengembangan interaktif.

import ee
import geemap.core as geemap

Colab (Python)

# Do a matrix multiplication: 1x6 times 6x1.
# Cast the greenness Array to an Image prior to multiplication.
greenness_array_image = ee.Image(greenness).matrixMultiply(array_image_2d)

Hasilnya adalah gambar array baru dengan setiap piksel adalah matriks 1x1 yang dihasilkan dari matriks yang mengalikan matriks kehijauan 1x6 (kiri) dan matriks band 6x1 (kanan). Untuk tujuan tampilan, konversi ke gambar satu band reguler dengan arrayGet():

Editor Kode (JavaScript)

// Get the result from the 1x1 array in each pixel of the 2-D array image.
var greennessImage = greennessArrayImage.arrayGet([0, 0]);

// Display the input imagery with the greenness result.
Map.setCenter(-122.3, 37.562, 10);
Map.addLayer(image, {bands: ['B5', 'B4', 'B3'], min: 0, max: 0.5}, 'image');
Map.addLayer(greennessImage, {min: -0.1, max: 0.13}, 'greenness');

Penyiapan Python

Lihat halaman Lingkungan Python untuk mengetahui informasi tentang Python API dan penggunaan geemap untuk pengembangan interaktif.

import ee
import geemap.core as geemap

Colab (Python)

# Get the result from the 1x1 array in each pixel of the 2-D array image.
greenness_image = greenness_array_image.arrayGet([0, 0])

# Display the input imagery with the greenness result.
m = geemap.Map()
m.set_center(-122.3, 37.562, 10)
m.add_layer(image, {'bands': ['B5', 'B4', 'B3'], 'min': 0, 'max': 0.5}, 'image')
m.add_layer(greenness_image, {'min': -0.1, 'max': 0.13}, 'greenness')
m

Berikut adalah contoh lengkap, yang menggunakan seluruh array koefisien untuk menghitung beberapa komponen tasseled cap sekaligus dan menampilkan hasilnya:

Editor Kode (JavaScript)

// Define an Array of Tasseled Cap coefficients.
var coefficients = ee.Array([
  [0.3029, 0.2786, 0.4733, 0.5599, 0.508, 0.1872],
  [-0.2941, -0.243, -0.5424, 0.7276, 0.0713, -0.1608],
  [0.1511, 0.1973, 0.3283, 0.3407, -0.7117, -0.4559],
  [-0.8239, 0.0849, 0.4396, -0.058, 0.2013, -0.2773],
  [-0.3294, 0.0557, 0.1056, 0.1855, -0.4349, 0.8085],
  [0.1079, -0.9023, 0.4119, 0.0575, -0.0259, 0.0252],
]);

// Load a Landsat 8 image, select the bands of interest.
var image = ee.Image('LANDSAT/LC08/C02/T1_TOA/LC08_044034_20140318')
  .select(['B2', 'B3', 'B4', 'B5', 'B6', 'B7']);

// Make an Array Image, with a 1-D Array per pixel.
var arrayImage1D = image.toArray();

// Make an Array Image with a 2-D Array per pixel, 6x1.
var arrayImage2D = arrayImage1D.toArray(1);

// Do a matrix multiplication: 6x6 times 6x1.
var componentsImage = ee.Image(coefficients)
  .matrixMultiply(arrayImage2D)
  // Get rid of the extra dimensions.
  .arrayProject([0])
  .arrayFlatten(
    [['brightness', 'greenness', 'wetness', 'fourth', 'fifth', 'sixth']]);

// Display the first three bands of the result and the input imagery.
var vizParams = {
  bands: ['brightness', 'greenness', 'wetness'],
  min: -0.1, max: [0.5, 0.1, 0.1]
};
Map.setCenter(-122.3, 37.562, 10);
Map.addLayer(image, {bands: ['B5', 'B4', 'B3'], min: 0, max: 0.5}, 'image');
Map.addLayer(componentsImage, vizParams, 'components');

Penyiapan Python

Lihat halaman Lingkungan Python untuk mengetahui informasi tentang Python API dan penggunaan geemap untuk pengembangan interaktif.

import ee
import geemap.core as geemap

Colab (Python)

# Define an Array of Tasseled Cap coefficients.
coefficients = ee.Array([
    [0.3029, 0.2786, 0.4733, 0.5599, 0.508, 0.1872],
    [-0.2941, -0.243, -0.5424, 0.7276, 0.0713, -0.1608],
    [0.1511, 0.1973, 0.3283, 0.3407, -0.7117, -0.4559],
    [-0.8239, 0.0849, 0.4396, -0.058, 0.2013, -0.2773],
    [-0.3294, 0.0557, 0.1056, 0.1855, -0.4349, 0.8085],
    [0.1079, -0.9023, 0.4119, 0.0575, -0.0259, 0.0252],
])

# Load a Landsat 8 image, select the bands of interest.
image = ee.Image('LANDSAT/LC08/C02/T1_TOA/LC08_044034_20140318').select(
    ['B2', 'B3', 'B4', 'B5', 'B6', 'B7']
)

# Make an Array Image, with a 1-D Array per pixel.
array_image_1d = image.toArray()

# Make an Array Image with a 2-D Array per pixel, 6x1.
array_image_2d = array_image_1d.toArray(1)

# Do a matrix multiplication: 6x6 times 6x1.
components_image = (
    ee.Image(coefficients)
    .matrixMultiply(array_image_2d)
    # Get rid of the extra dimensions.
    .arrayProject([0])
    .arrayFlatten(
        [['brightness', 'greenness', 'wetness', 'fourth', 'fifth', 'sixth']]
    )
)

# Display the first three bands of the result and the input imagery.
viz_params = {
    'bands': ['brightness', 'greenness', 'wetness'],
    'min': -0.1,
    'max': [0.5, 0.1, 0.1],
}
m = geemap.Map()
m.set_center(-122.3, 37.562, 10)
m.add_layer(image, {'bands': ['B5', 'B4', 'B3'], 'min': 0, 'max': 0.5}, 'image')
m.add_layer(components_image, viz_params, 'components')
m

Perhatikan bahwa saat mendapatkan band dari gambar array, hapus dimensi tambahan terlebih dahulu dengan project(), lalu konversikan kembali ke gambar biasa dengan arrayFlatten(). Outputnya akan terlihat seperti ini:

gambar topi dengan jumbai
Gambar 1. Komponen tasseled cap “brightness” (merah), “greenness” (hijau), dan “wetness” (biru).