Od 2011 r. Biuro Zarządzania Gruntami (Bureau of Land Management, BLM) zbiera informacje terenowe, aby na podstawie strategii oceny, inwentaryzacji i monitorowania (Assessment Inventory and Monitoring, AIM) określać stan gruntów. Do tej pory na terenach BLM zebrano ponad 6000 danych z obszarów AIM. Archiwum danych BLM AIM …
Zbiór danych FLDAS (McNally i in. 2017) został opracowany, aby ułatwić ocenę bezpieczeństwa żywnościowego w krajach rozwijających się o ograniczonym dostępie do danych. Zawiera informacje o wielu zmiennych związanych z klimatem, w tym o zawartości wilgoci, wilgotności, ewapotranspiracji, średniej temperaturze gleby, całkowitej ilości opadów itp. Istnieje wiele różnych zbiorów danych FLDAS.
System NASA Global Land Data Assimilation System Version 2 (GLDAS-2) składa się z 3 komponentów: GLDAS-2.0, GLDAS-2.1 i GLDAS-2.2. GLDAS-2.0 jest w całości wymuszany przez dane wejściowe Princeton dotyczące wymuszeń meteorologicznych i zapewnia spójną czasowo serię danych z lat 1948–2014. GLDAS-2.1 jest wymuszany przez połączenie modelu…
System NASA Global Land Data Assimilation System Version 2 (GLDAS-2) składa się z 3 komponentów: GLDAS-2.0, GLDAS-2.1 i GLDAS-2.2. GLDAS-2.0 jest w całości wymuszany przez dane wejściowe Princeton dotyczące wymuszeń meteorologicznych i zapewnia spójną czasowo serię danych z lat 1948–2014. GLDAS-2.1 jest wymuszany przez połączenie modelu…
M2T1NXLND (lub tavg1_2d_lnd_Nx) to godzinowa kolekcja danych uśrednionych w czasie w ramach analizy retrospektywnej z okresu współczesnego na potrzeby badań i zastosowań w wersji 2 (MERRA-2). Ta kolekcja zawiera dane diagnostyczne dotyczące powierzchni lądu, takie jak przepływ podstawowy, spływ powierzchniowy, wilgotność gleby powierzchniowej, wilgotność gleby w strefie korzeniowej, woda w warstwie powierzchniowej, woda w …
System asymilacji danych o powierzchni lądowej (LDAS) łączy wiele źródeł obserwacji (takich jak dane z deszczomierzy, dane satelitarne i pomiary opadów radarowych), aby tworzyć szacunki właściwości klimatycznych na powierzchni Ziemi lub w jej pobliżu. Ten zbiór danych jest głównym (domyślnym) plikiem wymuszającym (plik A) w fazie …
Zawartość gliny w % (kg / kg) na 6 standardowych głębokościach (0, 10, 30, 60, 100 i 200 cm) w rozdzielczości 250 m. Na podstawie prognoz uczenia maszynowego z globalnego zestawienia profili i próbek gleby. Szczegółowe informacje o etapach przetwarzania znajdziesz tutaj. Antarktyda to…
Prognozowane główne grupy gleb USDA w odległości 250 m (prawdopodobieństwa). Rozkład głównych grup gleb według klasyfikacji USDA na podstawie prognoz uczenia maszynowego z globalnego zestawienia profili glebowych. Więcej informacji o grupach gleb znajdziesz w ilustrowanym przewodniku po taksonomii gleb – NRCS…
Zawartość piasku w % (kg / kg) na 6 standardowych głębokościach (0, 10, 30, 60, 100 i 200 cm) w rozdzielczości 250 m. Na podstawie prognoz uczenia maszynowego z globalnego zestawienia profili i próbek gleby. Szczegółowe informacje o etapach przetwarzania znajdziesz tutaj. Antarktyda to…
Gęstość nasypowa gleby (drobna frakcja) w jednostkach 10 x kg / m³ na 6 standardowych głębokościach (0, 10, 30, 60, 100 i 200 cm) w rozdzielczości 250 m. Szczegółowe informacje o etapach przetwarzania znajdziesz tutaj. Antarktyda nie jest uwzględniona. Aby uzyskać dostęp do map poza Earth i je wizualizować…
Zawartość węgla organicznego w glebie w x 5 g / kg na 6 standardowych głębokościach (0, 10, 30, 60, 100 i 200 cm) w rozdzielczości 250 m. Dane przewidywane na podstawie globalnego zestawienia punktów glebowych. Szczegółowe informacje o etapach przetwarzania znajdziesz tutaj. Antarktyda nie jest uwzględniona. …
Klasy tekstury gleby (system USDA) dla 6 głębokości gleby (0, 10, 30, 60, 100 i 200 cm) w rozdzielczości 250 m. Dane pochodzą z przewidywanych frakcji tekstury gleby przy użyciu pakietu soiltexture w R. Szczegółowe informacje o etapach przetwarzania znajdziesz tutaj. Antarktyda nie jest uwzględniona. Aby uzyskać dostęp do…
Zawartość wody w glebie (objętościowo %) przy ciśnieniu 33 kPa i 1500 kPa, przewidywana na 6 standardowych głębokościach (0, 10, 30, 60, 100 i 200 cm) w rozdzielczości 250 m. Punkty szkoleniowe są oparte na globalnym zestawieniu profili glebowych: USDA NCSS AfSPDB ISRIC WISE EGRPR SPADE…
pH gleby w H2O na 6 standardowych głębokościach (0, 10, 30, 60, 100 i 200 cm) w rozdzielczości 250 m. Szczegółowe informacje o etapach przetwarzania znajdziesz tutaj. Antarktyda nie jest uwzględniona. Aby uzyskać dostęp do map i wyświetlać je poza Earth Engine, skorzystaj z tej strony. Jeśli…
Prognozowane prawdopodobieństwa wystąpienia wielkich grup gleb USDA w rozdzielczości 250 m. Rozkład głównych grup gleb według klasyfikacji USDA na podstawie prognoz uczenia maszynowego z globalnego zestawienia profili glebowych. Więcej informacji o grupach gleb znajdziesz w ilustrowanym przewodniku po taksonomii gleb – NRCS – …
System NASA Global Land Data Assimilation System Version 2 (GLDAS-2) składa się z 3 komponentów: GLDAS-2.0, GLDAS-2.1 i GLDAS-2.2. GLDAS-2.0 jest w całości wymuszany przez dane wejściowe Princeton dotyczące wymuszeń meteorologicznych i zapewnia spójną czasowo serię danych z lat 1948–2014. GLDAS-2.1 jest wymuszany przez połączenie modelu…
Soil and Landscape Grid of Australia (SLGA) to kompleksowy zbiór danych o właściwościach gleby w Australii w rozdzielczości 3 sekund łuku (~90 m pikseli). Powierzchnie to wyniki modelowania, które opisują przestrzenny rozkład atrybutów gleby na podstawie istniejących danych o glebie i środowisku.
Dane od 4 grudnia 2023 r. są dostępne w kolekcji NASA/SMAP/SPL3SMP_E/006. Ten produkt dotyczący wilgotności gleby na poziomie 3 (L3) zawiera dzienny kompozyt globalnych warunków powierzchni lądu uzyskany za pomocą radiometru pasma L (SMAP) na satelicie Soil Moisture Active Passive. Dane dzienne zostały zebrane z danych malejących (lokalnych …
Dane sprzed 4 grudnia 2023 r. są dostępne w starszej kolekcji NASA/SMAP/SPL3SMP_E/005. Zostaną one ostatecznie ponownie przetworzone i dodane do tej kolekcji. Ten produkt dotyczący wilgotności gleby na poziomie 3 (L3) zawiera dzienny kompozyt globalnych warunków powierzchni lądu uzyskany za pomocą instrumentu Soil Moisture Active Passive (SMAP) L-Band…
Produkt SMAP Level-4 (L4) Soil Moisture obejmuje wilgotność gleby powierzchniowej (średnia pionowa 0–5 cm), wilgotność gleby w strefie korzeniowej (średnia pionowa 0–100 cm) oraz dodatkowe produkty badawcze (niezweryfikowane), w tym zmienne wymuszające meteorologiczne na powierzchni, temperaturę gleby, ewapotranspirację i promieniowanie netto. Ten zbiór danych, formalnie znany jako …
Objętościowa zawartość wody przy ssaniu 10 kPa, 33 kPa i 1500 kPa w jednostkach 10^-3 cm^3/cm^3 (0, 1% obj.lub 1 mm/m) na 6 standardowych głębokościach (0–5 cm, 5–15 cm, 15–30 cm, 30–60 cm, 60–100 cm, 100–200 cm). Prognozy zostały opracowane przy użyciu cyfrowego mapowania gleby na podstawie metody Quantile Random Forest, która wykorzystuje globalne…
Gęstość nasypowa, frakcja <2 mm na głębokościach gleby 0–20 cm i 20–50 cm, prognozowana średnia i odchylenie standardowe. Wartości pikseli muszą zostać przekształcone wstecznie za pomocą wzoru x/100. Na obszarach gęstej dżungli (głównie w Afryce Środkowej) dokładność modelu jest niska, dlatego mogą pojawiać się artefakty, takie jak pasy (paski) …
Zawartość gliny na głębokości 0–20 cm i 20–50 cm, przewidywana średnia i odchylenie standardowe. Na obszarach gęstej dżungli (głównie w Afryce Środkowej) dokładność modelu jest niska, dlatego mogą pojawiać się artefakty, takie jak pasy. Prognozy dotyczące właściwości gleby zostały opracowane przez firmę Innovative …
Głębokość do podłoża skalnego na głębokości 0–200 cm, prognozowana średnia i odchylenie standardowe. Ze względu na potencjalną maskę gruntów ornych, która została użyta do wygenerowania danych, wiele obszarów odsłoniętej skały (gdzie głębokość do podłoża skalnego wynosiłaby 0 cm) zostało zamaskowanych i dlatego pojawiają się jako …
Przewidywana średnia i odchylenie standardowe efektywnej pojemności wymiany kationowej na głębokościach gleby 0–20 cm i 20–50 cm. Wartości pikseli muszą być przekształcone wstecznie za pomocą funkcji exp(x/10)-1. Na obszarach gęstej dżungli (głównie w Afryce Środkowej) dokładność modelu jest niska, dlatego mogą pojawiać się artefakty, takie jak pasy (paski) …
Ekstrakcyjny wapń na głębokości 0–20 cm i 20–50 cm, prognozowana średnia i odchylenie standardowe. Wartości pikseli należy przekształcić wstecznie za pomocą funkcji exp(x/10)-1. Na obszarach gęstej dżungli (głównie w Afryce Środkowej) dokładność modelu jest niska, dlatego mogą pojawiać się artefakty, takie jak pasy.
Żelazo, które można wyekstrahować z gleby na głębokości 0–20 cm i 20–50 cm, prognozowana średnia i odchylenie standardowe. Wartości pikseli należy przekształcić wstecznie za pomocą funkcji exp(x/10)-1. Na obszarach gęstej dżungli (głównie w Afryce Środkowej) dokładność modelu jest niska, dlatego mogą pojawiać się artefakty, takie jak pasy.
Ekstrakcyjny magnez na głębokości 0–20 cm i 20–50 cm, przewidywana średnia i odchylenie standardowe. Wartości pikseli należy przekształcić wstecznie za pomocą funkcji exp(x/10)-1. Na obszarach gęstej dżungli (głównie w Afryce Środkowej) dokładność modelu jest niska, dlatego mogą pojawiać się artefakty, takie jak pasy.
Ekstrakcyjny fosfor na głębokości gleby 0–20 cm i 20–50 cm, prognozowana średnia i odchylenie standardowe. Wartości pikseli należy przekształcić wstecznie za pomocą funkcji exp(x/10)-1. Na obszarach gęstej dżungli (głównie w Afryce Środkowej) dokładność modelu jest niska, dlatego mogą pojawiać się artefakty, takie jak pasy.
Ekstrahowany potas na głębokości 0–20 cm i 20–50 cm, prognozowana średnia i odchylenie standardowe. Wartości pikseli należy przekształcić wstecznie za pomocą funkcji exp(x/10)-1. Na obszarach gęstej dżungli (głównie w Afryce Środkowej) dokładność modelu jest niska, dlatego mogą pojawiać się artefakty, takie jak pasy.
Ekstrakcyjny siarka na głębokości gleby 0–20 cm i 20–50 cm, prognozowana średnia i odchylenie standardowe. Wartości pikseli należy przekształcić wstecznie za pomocą funkcji exp(x/10)-1. Na obszarach gęstej dżungli (głównie w Afryce Środkowej) dokładność modelu jest niska, dlatego mogą pojawiać się artefakty, takie jak pasy.
Ekstrahowany cynk na głębokościach gleby 0–20 cm i 20–50 cm, przewidywana średnia i odchylenie standardowe. Wartości pikseli należy przekształcić wstecznie za pomocą funkcji exp(x/10)-1. Na obszarach gęstej dżungli (głównie w Afryce Środkowej) dokładność modelu jest niska, dlatego mogą pojawiać się artefakty, takie jak pasy.
Klasyfikacja zdolności gleby do użyźniania na podstawie nachylenia, właściwości chemicznych i fizycznych gleby. Więcej informacji o tej warstwie znajdziesz na tej stronie. Klasy pasma „fcc” dotyczą wartości pikseli, które muszą zostać przekształcone wstecznie za pomocą funkcji x modulo 3000. Na obszarach gęstej dżungli…
Węgiel organiczny na głębokości 0–20 cm i 20–50 cm, prognozowana średnia i odchylenie standardowe. Wartości pikseli należy przekształcić wstecznie za pomocą funkcji exp(x/10)-1. Na obszarach gęstej dżungli (głównie w Afryce Środkowej) dokładność modelu jest niska, dlatego mogą pojawiać się artefakty, takie jak pasy.
Zawartość piasku na głębokości 0–20 cm i 20–50 cm, przewidywana średnia i odchylenie standardowe. Na obszarach gęstej dżungli (głównie w Afryce Środkowej) dokładność modelu jest niska, dlatego mogą pojawiać się artefakty, takie jak pasy. Prognozy dotyczące właściwości gleby zostały opracowane przez firmę Innovative …
Zawartość mułu na głębokości 0–20 cm i 20–50 cm, przewidywana średnia i odchylenie standardowe. Wartości pikseli należy przekształcić wstecznie za pomocą funkcji exp(x/10)-1. Na obszarach gęstej dżungli (głównie w Afryce Środkowej) dokładność modelu jest niska, dlatego mogą pojawiać się artefakty, takie jak pasy.
Zawartość kamieni na głębokości 0–20 cm i 20–50 cm, przewidywana średnia i odchylenie standardowe. Wartości pikseli należy przekształcić wstecznie za pomocą funkcji exp(x/10)-1. Na obszarach gęstej dżungli (głównie w Afryce Środkowej) dokładność modelu jest niska, dlatego mogą pojawiać się artefakty, takie jak pasy.
Całkowita zawartość węgla na głębokości 0–20 cm i 20–50 cm, przewidywana średnia i odchylenie standardowe. Wartości pikseli należy przekształcić wstecznie za pomocą funkcji exp(x/10)-1. Na obszarach gęstej dżungli (głównie w Afryce Środkowej) dokładność modelu jest niska, dlatego mogą pojawiać się artefakty, takie jak pasy.
Całkowita zawartość azotu na głębokości 0–20 cm i 20–50 cm, przewidywana średnia i odchylenie standardowe. Wartości pikseli muszą być przekształcone wstecznie za pomocą funkcji exp(x/100)-1. Na obszarach gęstej dżungli (głównie w Afryce Środkowej) dokładność modelu jest niska, dlatego mogą pojawiać się artefakty, takie jak pasy.
Klasa tekstury gleby według USDA na głębokości 0–20 cm i 20–50 cm. Na obszarach gęstej dżungli (głównie w Afryce Środkowej) dokładność modelu jest niska, dlatego mogą pojawiać się artefakty, takie jak pasy. Prognozy dotyczące właściwości gleby zostały opracowane przez Innovative Solutions for Decision …
Ekstrahowane aluminium na głębokościach 0–20 cm i 20–50 cm, przewidywana średnia i odchylenie standardowe. Wartości pikseli należy przekształcić wstecznie za pomocą funkcji exp(x/10)-1. Prognozy dotyczące właściwości gleby zostały opracowane przez firmę Innovative Solutions for Decision Agriculture Ltd. (iSDA) w rozdzielczości 30 m przy użyciu systemów uczących się w połączeniu z …
pH na głębokościach 0–20 cm i 20–50 cm, prognozowana średnia i odchylenie standardowe. Wartości pikseli należy przekształcić wstecznie za pomocą wzoru x/10. Na obszarach gęstej dżungli (głównie w Afryce Środkowej) dokładność modelu jest niska, dlatego mogą pojawiać się artefakty, takie jak pasy. …
[[["Łatwo zrozumieć","easyToUnderstand","thumb-up"],["Rozwiązało to mój problem","solvedMyProblem","thumb-up"],["Inne","otherUp","thumb-up"]],[["Brak potrzebnych mi informacji","missingTheInformationINeed","thumb-down"],["Zbyt skomplikowane / zbyt wiele czynności do wykonania","tooComplicatedTooManySteps","thumb-down"],["Nieaktualne treści","outOfDate","thumb-down"],["Problem z tłumaczeniem","translationIssue","thumb-down"],["Problem z przykładami/kodem","samplesCodeIssue","thumb-down"],["Inne","otherDown","thumb-down"]],[],[],[]]