AI-generated Key Takeaways
-
ee.data.getPixels
fetches raw image data or visualized 8-bit RGB data from an Earth Engine image asset. -
The function requires specifying the asset ID and allows customization of file format, pixel grid, region, bands, and visualization options.
-
Users can define the output region, select specific bands for extraction, and apply visualization parameters for an RGB representation.
-
Python examples demonstrate the usage of
ee.data.getPixels
with the necessary parameters and retrieving image data.
Returns: The pixels as raw image data.
Usage | Returns |
---|---|
ee.data.getPixels(params) | Object|Value |
Argument | Type | Details |
---|---|---|
params | Object | An object containing parameters with the following possible values:
assetId - The asset ID for which to get pixels. Must be an image asset.
fileFormat - The resulting file format. Defaults to png. See
ImageFileFormat
for the available formats. There are additional formats that convert
the downloaded object to a Python data object. These include:
NUMPY_NDARRAY , which converts to a structured NumPy
array.
grid - Parameters describing the pixel grid in which to fetch data.
Defaults to the native pixel grid of the data.
region - If present, the region of data to return, specified as a GeoJSON
geometry object (see RFC 7946).
bandIds - If present, specifies a specific set of bands from which to get
pixels.
visualizationOptions - If present, a set of visualization options to apply
to produce an 8-bit RGB visualization of the data,
rather than returning the raw data. |
Examples
import ee import geemap.core as geemap
Colab (Python)
# Region of interest. coords = [ -121.58626826832939, 38.059141484827485, ] region = ee.Geometry.Point(coords) # Get a Sentinel-2 image. image = (ee.ImageCollection('COPERNICUS/S2') .filterBounds(region) .filterDate('2020-04-01', '2020-09-01') .sort('CLOUD_COVERAGE_ASSESSMENT') .first()) image_id = image.getInfo()['id'] # Make a projection to discover the scale in degrees. proj = ee.Projection('EPSG:4326').atScale(10).getInfo() # Get scales out of the transform. scale_x = proj['transform'][0] scale_y = -proj['transform'][4] # Make a request object. request = { 'assetId': image_id, 'fileFormat': 'PNG', 'bandIds': ['B4', 'B3', 'B2'], 'grid': { 'dimensions': { 'width': 640, 'height': 640 }, 'affineTransform': { 'scaleX': scale_x, 'shearX': 0, 'translateX': coords[0], 'shearY': 0, 'scaleY': scale_y, 'translateY': coords[1] }, 'crsCode': proj['crs'], }, 'visualizationOptions': {'ranges': [{'min': 0, 'max': 3000}]}, } image_png = ee.data.getPixels(request) # Do something with the image...