O problema da mala

No problema de bagagem, é necessário empacotar um conjunto de itens com valores e tamanhos específicos (como pesos ou volumes) em um contêiner com capacidade máxima. Se o tamanho total dos itens exceder a capacidade, não é possível empacotar todos. Nesse caso, o problema é escolher um subconjunto dos itens de valor total máximo que cabem no contêiner.

As seções abaixo mostram como resolver um problema de basta usando ferramentas OR.

Exemplo

Veja uma representação gráfica de um problema de mochila.

Na animação acima, os itens 50 são compactados em uma lixeira. Cada item tem um valor (o número do item) e uma ponderação (aproximadamente proporcional à área do item). A lixeira é declarada como tendo uma capacidade de 850, e nosso objetivo é encontrar o conjunto de itens que maximizarão o valor total sem exceder a capacidade.

As seções a seguir descrevem programas que resolvem um problema de basta. Para ver os programas completos, consulte Programas completos.

Importar as bibliotecas

O código a seguir importa as bibliotecas necessárias.

Python

from ortools.algorithms.python import knapsack_solver

C++

#include <algorithm>
#include <cstdint>
#include <iterator>
#include <numeric>
#include <sstream>
#include <vector>

#include "ortools/algorithms/knapsack_solver.h"

Java

import com.google.ortools.Loader;
import com.google.ortools.algorithms.KnapsackSolver;
import java.util.ArrayList;

C#

using System;
using Google.OrTools.Algorithms;

Criar os dados

O código abaixo cria os dados para o problema.

Python

values = [
    # fmt:off
  360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147,
  78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28,
  87, 73, 78, 15, 26, 78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276,
  312
    # fmt:on
]
weights = [
    # fmt: off
  [7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9, 0,
   42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71,
   3, 86, 66, 31, 65, 0, 79, 20, 65, 52, 13],
    # fmt: on
]
capacities = [850]

C++

std::vector<int64_t> values = {
    360, 83, 59,  130, 431, 67, 230, 52,  93,  125, 670, 892, 600,
    38,  48, 147, 78,  256, 63, 17,  120, 164, 432, 35,  92,  110,
    22,  42, 50,  323, 514, 28, 87,  73,  78,  15,  26,  78,  210,
    36,  85, 189, 274, 43,  33, 10,  19,  389, 276, 312};

std::vector<std::vector<int64_t>> weights = {
    {7,  0,  30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0,  36, 3,  8,  15,
     42, 9,  0,  42, 47, 52, 32, 26, 48, 55, 6,  29, 84, 2,  4,  18, 56,
     7,  29, 93, 44, 71, 3,  86, 66, 31, 65, 0,  79, 20, 65, 52, 13}};

std::vector<int64_t> capacities = {850};

Java

final long[] values = {360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147,
    78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28, 87, 73, 78, 15, 26,
    78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276, 312};

final long[][] weights = {{7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9,
    0, 42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71, 3, 86, 66, 31,
    65, 0, 79, 20, 65, 52, 13}};

final long[] capacities = {850};

C#

long[] values = { 360, 83, 59, 130, 431, 67,  230, 52,  93,  125, 670, 892, 600, 38,  48,  147, 78,
                  256, 63, 17, 120, 164, 432, 35,  92,  110, 22,  42,  50,  323, 514, 28,  87,  73,
                  78,  15, 26, 78,  210, 36,  85,  189, 274, 43,  33,  10,  19,  389, 276, 312 };

long[,] weights = { { 7,  0,  30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0,  36, 3,  8,  15,
                      42, 9,  0,  42, 47, 52, 32, 26, 48, 55, 6,  29, 84, 2,  4,  18, 56,
                      7,  29, 93, 44, 71, 3,  86, 66, 31, 65, 0,  79, 20, 65, 52, 13 } };

long[] capacities = { 850 };

Os dados incluem:

  • weights: um vetor que contém os pesos dos itens.
  • values: um vetor que contém os valores dos itens.
  • capacities: um vetor com apenas uma entrada, a capacidade da mochila.

Declarar o solucionador

O código a seguir declara o solucionador de erros.

Python

solver = knapsack_solver.KnapsackSolver(
    knapsack_solver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER,
    "KnapsackExample",
)

C++

KnapsackSolver solver(
    KnapsackSolver::KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER,
    "KnapsackExample");

Java

KnapsackSolver solver = new KnapsackSolver(
    KnapsackSolver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, "test");

C#

KnapsackSolver solver = new KnapsackSolver(
    KnapsackSolver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, "KnapsackExample");

A opção KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER instrui o solucionador a usar o algoritmo ramificação e vinculado para resolver o problema.

.

Ligar para o solucionador

O código a seguir chama o solucionador e exibe a solução.

Python

solver.init(values, weights, capacities)
computed_value = solver.solve()
packed_items = []
packed_weights = []
total_weight = 0
print("Total value =", computed_value)
for i in range(len(values)):
    if solver.best_solution_contains(i):
        packed_items.append(i)
        packed_weights.append(weights[0][i])
        total_weight += weights[0][i]
print("Total weight:", total_weight)
print("Packed items:", packed_items)
print("Packed_weights:", packed_weights)

C++

solver.Init(values, weights, capacities);
int64_t computed_value = solver.Solve();
std::vector<int> packed_items;
for (std::size_t i = 0; i < values.size(); ++i) {
  if (solver.BestSolutionContains(i)) packed_items.push_back(i);
}
std::ostringstream packed_items_ss;
std::copy(packed_items.begin(), packed_items.end() - 1,
          std::ostream_iterator<int>(packed_items_ss, ", "));
packed_items_ss << packed_items.back();

std::vector<int64_t> packed_weights;
packed_weights.reserve(packed_items.size());
for (const auto& it : packed_items) {
  packed_weights.push_back(weights[0][it]);
}
std::ostringstream packed_weights_ss;
std::copy(packed_weights.begin(), packed_weights.end() - 1,
          std::ostream_iterator<int>(packed_weights_ss, ", "));
packed_weights_ss << packed_weights.back();

int64_t total_weights =
    std::accumulate(packed_weights.begin(), packed_weights.end(), int64_t{0});

LOG(INFO) << "Total value: " << computed_value;
LOG(INFO) << "Packed items: {" << packed_items_ss.str() << "}";
LOG(INFO) << "Total weight: " << total_weights;
LOG(INFO) << "Packed weights: {" << packed_weights_ss.str() << "}";

Java

solver.init(values, weights, capacities);
final long computedValue = solver.solve();
ArrayList<Integer> packedItems = new ArrayList<>();
ArrayList<Long> packedWeights = new ArrayList<>();
int totalWeight = 0;
System.out.println("Total value = " + computedValue);
for (int i = 0; i < values.length; i++) {
  if (solver.bestSolutionContains(i)) {
    packedItems.add(i);
    packedWeights.add(weights[0][i]);
    totalWeight = (int) (totalWeight + weights[0][i]);
  }
}
System.out.println("Total weight: " + totalWeight);
System.out.println("Packed items: " + packedItems);
System.out.println("Packed weights: " + packedWeights);

C#

solver.Init(values, weights, capacities);
long computedValue = solver.Solve();
Console.WriteLine("Optimal Value = " + computedValue);

Primeiro, o programa inicializa o solucionador e depois o chama por computed_value = solver.Solve(). O valor total da solução ideal é computed_value, que é o mesmo que o peso total nesse caso. O programa recebe os índices dos itens compactados na solução da seguinte maneira:

packed_items = [x for x in range(0, len(weights[0]))
                  if solver.BestSolutionContains(x)]
Como "solver.BestSolutionContains(x)", retorna "TRUE" se o item x estiver incluído na solução, "packed_items" é uma lista dos itens compactados ideais. Da mesma forma, `packed_weights` é o peso dos itens embalados. ### Saída do programa Esta é a saída do programa.
Total value = 7534
Total weight: 850
Packed items: [0, 1, 3, 4, 6, 10, 11, 12, 14, 15, 16, 17, 18, 19, 21, 22, 24, 27, 28, 29, 30, 31,
               32, 34, 38, 39, 41, 42, 44, 47, 48, 49]
Packed_weights: [7, 0, 22, 80, 11, 59, 18, 0, 3, 8, 15, 42, 9, 0, 47, 52, 26, 6, 29, 84, 2, 4,
                 18, 7, 71, 3, 66, 31, 0, 65, 52, 13]

Concluir programas

Confira abaixo os programas completos que resolvem o problema da mochila.

Python

from ortools.algorithms.python import knapsack_solver


def main():
    # Create the solver.
    solver = knapsack_solver.KnapsackSolver(
        knapsack_solver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER,
        "KnapsackExample",
    )

    values = [
        # fmt:off
      360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147,
      78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28,
      87, 73, 78, 15, 26, 78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276,
      312
        # fmt:on
    ]
    weights = [
        # fmt: off
      [7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9, 0,
       42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71,
       3, 86, 66, 31, 65, 0, 79, 20, 65, 52, 13],
        # fmt: on
    ]
    capacities = [850]

    solver.init(values, weights, capacities)
    computed_value = solver.solve()

    packed_items = []
    packed_weights = []
    total_weight = 0
    print("Total value =", computed_value)
    for i in range(len(values)):
        if solver.best_solution_contains(i):
            packed_items.append(i)
            packed_weights.append(weights[0][i])
            total_weight += weights[0][i]
    print("Total weight:", total_weight)
    print("Packed items:", packed_items)
    print("Packed_weights:", packed_weights)


if __name__ == "__main__":
    main()

C++

#include <algorithm>
#include <cstdint>
#include <iterator>
#include <numeric>
#include <sstream>
#include <vector>

#include "ortools/algorithms/knapsack_solver.h"

namespace operations_research {
void RunKnapsackExample() {
  // Instantiate the solver.
  KnapsackSolver solver(
      KnapsackSolver::KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER,
      "KnapsackExample");

  std::vector<int64_t> values = {
      360, 83, 59,  130, 431, 67, 230, 52,  93,  125, 670, 892, 600,
      38,  48, 147, 78,  256, 63, 17,  120, 164, 432, 35,  92,  110,
      22,  42, 50,  323, 514, 28, 87,  73,  78,  15,  26,  78,  210,
      36,  85, 189, 274, 43,  33, 10,  19,  389, 276, 312};

  std::vector<std::vector<int64_t>> weights = {
      {7,  0,  30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0,  36, 3,  8,  15,
       42, 9,  0,  42, 47, 52, 32, 26, 48, 55, 6,  29, 84, 2,  4,  18, 56,
       7,  29, 93, 44, 71, 3,  86, 66, 31, 65, 0,  79, 20, 65, 52, 13}};

  std::vector<int64_t> capacities = {850};

  solver.Init(values, weights, capacities);
  int64_t computed_value = solver.Solve();

  // Print solution
  std::vector<int> packed_items;
  for (std::size_t i = 0; i < values.size(); ++i) {
    if (solver.BestSolutionContains(i)) packed_items.push_back(i);
  }
  std::ostringstream packed_items_ss;
  std::copy(packed_items.begin(), packed_items.end() - 1,
            std::ostream_iterator<int>(packed_items_ss, ", "));
  packed_items_ss << packed_items.back();

  std::vector<int64_t> packed_weights;
  packed_weights.reserve(packed_items.size());
  for (const auto& it : packed_items) {
    packed_weights.push_back(weights[0][it]);
  }
  std::ostringstream packed_weights_ss;
  std::copy(packed_weights.begin(), packed_weights.end() - 1,
            std::ostream_iterator<int>(packed_weights_ss, ", "));
  packed_weights_ss << packed_weights.back();

  int64_t total_weights =
      std::accumulate(packed_weights.begin(), packed_weights.end(), int64_t{0});

  LOG(INFO) << "Total value: " << computed_value;
  LOG(INFO) << "Packed items: {" << packed_items_ss.str() << "}";
  LOG(INFO) << "Total weight: " << total_weights;
  LOG(INFO) << "Packed weights: {" << packed_weights_ss.str() << "}";
}
}  // namespace operations_research

int main(int argc, char** argv) {
  operations_research::RunKnapsackExample();
  return EXIT_SUCCESS;
}

Java

package com.google.ortools.algorithms.samples;
import com.google.ortools.Loader;
import com.google.ortools.algorithms.KnapsackSolver;
import java.util.ArrayList;

/**
 * Sample showing how to model using the knapsack solver.
 */
public class Knapsack {
  private Knapsack() {}

  private static void solve() {
    KnapsackSolver solver = new KnapsackSolver(
        KnapsackSolver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, "test");

    final long[] values = {360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147,
        78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28, 87, 73, 78, 15, 26,
        78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276, 312};

    final long[][] weights = {{7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9,
        0, 42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71, 3, 86, 66, 31,
        65, 0, 79, 20, 65, 52, 13}};

    final long[] capacities = {850};

    solver.init(values, weights, capacities);
    final long computedValue = solver.solve();

    ArrayList<Integer> packedItems = new ArrayList<>();
    ArrayList<Long> packedWeights = new ArrayList<>();
    int totalWeight = 0;
    System.out.println("Total value = " + computedValue);
    for (int i = 0; i < values.length; i++) {
      if (solver.bestSolutionContains(i)) {
        packedItems.add(i);
        packedWeights.add(weights[0][i]);
        totalWeight = (int) (totalWeight + weights[0][i]);
      }
    }
    System.out.println("Total weight: " + totalWeight);
    System.out.println("Packed items: " + packedItems);
    System.out.println("Packed weights: " + packedWeights);
  }

  public static void main(String[] args) throws Exception {
    Loader.loadNativeLibraries();
    Knapsack.solve();
  }
}

C#

using System;
using Google.OrTools.Algorithms;

public class Knapsack
{
    static void Main()
    {
        KnapsackSolver solver = new KnapsackSolver(
            KnapsackSolver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, "KnapsackExample");

        long[] values = { 360, 83, 59, 130, 431, 67,  230, 52,  93,  125, 670, 892, 600, 38,  48,  147, 78,
                          256, 63, 17, 120, 164, 432, 35,  92,  110, 22,  42,  50,  323, 514, 28,  87,  73,
                          78,  15, 26, 78,  210, 36,  85,  189, 274, 43,  33,  10,  19,  389, 276, 312 };

        long[,] weights = { { 7,  0,  30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0,  36, 3,  8,  15,
                              42, 9,  0,  42, 47, 52, 32, 26, 48, 55, 6,  29, 84, 2,  4,  18, 56,
                              7,  29, 93, 44, 71, 3,  86, 66, 31, 65, 0,  79, 20, 65, 52, 13 } };

        long[] capacities = { 850 };

        solver.Init(values, weights, capacities);
        long computedValue = solver.Solve();

        Console.WriteLine("Optimal Value = " + computedValue);
    }
}