इमेज या वीडियो में मौजूद टेक्स्ट की पहचान करने के लिए, एमएल किट का इस्तेमाल किया जा सकता है. जैसे, सड़क के किनारे बना साइन बोर्ड. इस सुविधा की मुख्य विशेषताएं ये हैं:
सुविधा | अनबंडल किए गए | बंडल किए गए |
---|---|---|
लाइब्रेरी का नाम | com.google.android.gms:play-services-mlkit-text-recognition
com.google.android.gms:play-services-mlkit-text-recognition-chinese com.google.android.gms:play-services-mlkit-text-recognition-devanagari com.google.android.gms:play-services-mlkit-text-recognition-japanese com.google.android.gms:play-services-mlkit-text-recognition-korean |
com.google.mlkit:text-recognition
com.google.mlkit:text-recognition-chinese com.google.mlkit:text-recognition-devanagari com.google.mlkit:text-recognition-japanese com.google.mlkit:text-recognition-korean |
लागू करना | मॉडल को Google Play services की मदद से, डाइनैमिक रूप से डाउनलोड किया जाता है. | बिल्ड के दौरान, मॉडल आपके ऐप्लिकेशन से स्टैटिक रूप से लिंक होता है. |
ऐप्लिकेशन का साइज़ | हर स्क्रिप्ट आर्किटेक्चर के हिसाब से करीब 260 केबी का साइज़ बढ़ता है. | हर स्क्रिप्ट के लिए करीब चार एमबी साइज़ बढ़ता है. |
प्रोसेस शुरू होने का समय | पहली बार इस्तेमाल करने से पहले, मॉडल के डाउनलोड होने तक इंतज़ार करना पड़ सकता है. | मॉडल तुरंत उपलब्ध हो जाता है. |
परफ़ॉर्मेंस | लैटिन स्क्रिप्ट लाइब्रेरी के लिए ज़्यादातर डिवाइसों पर रीयल-टाइम, अन्य के लिए धीमा. | लैटिन स्क्रिप्ट लाइब्रेरी के लिए ज़्यादातर डिवाइसों पर रीयल-टाइम, अन्य के लिए धीमा. |
इसे आज़माएं
- सैंपल वाले ऐप्लिकेशन को इस्तेमाल करके देखें, इस एपीआई के इस्तेमाल का एक उदाहरण देखें.
- कोडलैब (कोड बनाना सीखना).
शुरू करने से पहले
- प्रोजेक्ट-लेवल की
build.gradle
फ़ाइल में, पक्का करें कि आपनेbuildscript
औरallprojects
, दोनों सेक्शन में Google की Maven रिपॉज़िटरी को शामिल किया हो. अपने मॉड्यूल की ऐप्लिकेशन-लेवल की Gradle फ़ाइल में ML Kit Android लाइब्रेरी के लिए डिपेंडेंसी जोड़ें, जो आम तौर पर
app/build.gradle
होती है:अपने ऐप्लिकेशन के साथ मॉडल को बंडल करने के लिए:
dependencies { // To recognize Latin script implementation 'com.google.mlkit:text-recognition:16.0.1' // To recognize Chinese script implementation 'com.google.mlkit:text-recognition-chinese:16.0.1' // To recognize Devanagari script implementation 'com.google.mlkit:text-recognition-devanagari:16.0.1' // To recognize Japanese script implementation 'com.google.mlkit:text-recognition-japanese:16.0.1' // To recognize Korean script implementation 'com.google.mlkit:text-recognition-korean:16.0.1' }
Google Play Services में मॉडल का इस्तेमाल करने के लिए:
dependencies { // To recognize Latin script implementation 'com.google.android.gms:play-services-mlkit-text-recognition:19.0.1' // To recognize Chinese script implementation 'com.google.android.gms:play-services-mlkit-text-recognition-chinese:16.0.1' // To recognize Devanagari script implementation 'com.google.android.gms:play-services-mlkit-text-recognition-devanagari:16.0.1' // To recognize Japanese script implementation 'com.google.android.gms:play-services-mlkit-text-recognition-japanese:16.0.1' // To recognize Korean script implementation 'com.google.android.gms:play-services-mlkit-text-recognition-korean:16.0.1' }
अगर आपको Google Play Services में मॉडल का इस्तेमाल करना है, तो अपने ऐप्लिकेशन को इस तरह कॉन्फ़िगर करें कि वह इस अवधि के बाद मॉडल को डिवाइस पर अपने-आप डाउनलोड करे आपका ऐप्लिकेशन Play Store से इंस्टॉल किया गया हो. ऐसा करने के लिए, यह जानकारी जोड़ें आपके ऐप्लिकेशन की
AndroidManifest.xml
फ़ाइल का एलान:<application ...> ... <meta-data android:name="com.google.mlkit.vision.DEPENDENCIES" android:value="ocr" > <!-- To use multiple models: android:value="ocr,ocr_chinese,ocr_devanagari,ocr_japanese,ocr_korean,..." --> </application>
मॉडल की उपलब्धता को साफ़ तौर पर देखा जा सकता है और डाउनलोड करने का अनुरोध भी किया जा सकता है Google Play services ModuleInstallClient API का इस्तेमाल करके. अगर इंस्टॉल के समय वाले मॉडल को चालू नहीं किया जाता है, तो या एक्सप्लिसिट डाउनलोड का अनुरोध करता है, तो मॉडल पहले स्कैन करने का समय दिया जाता है. डाउनलोड करने से पहले किए जाने वाले अनुरोध पूर्ण होने के बावजूद कोई परिणाम नहीं मिले.
1. TextRecognizer
का इंस्टेंस बनाएं
विकल्पों को पास करते हुए TextRecognizer
का एक इंस्टेंस बनाएं
यह उस लाइब्रेरी से जुड़ी होगी जिसका एलान आपने ऊपर किया था:
Kotlin
// When using Latin script library val recognizer = TextRecognition.getClient(TextRecognizerOptions.DEFAULT_OPTIONS) // When using Chinese script library val recognizer = TextRecognition.getClient(ChineseTextRecognizerOptions.Builder().build()) // When using Devanagari script library val recognizer = TextRecognition.getClient(DevanagariTextRecognizerOptions.Builder().build()) // When using Japanese script library val recognizer = TextRecognition.getClient(JapaneseTextRecognizerOptions.Builder().build()) // When using Korean script library val recognizer = TextRecognition.getClient(KoreanTextRecognizerOptions.Builder().build())
Java
// When using Latin script library TextRecognizer recognizer = TextRecognition.getClient(TextRecognizerOptions.DEFAULT_OPTIONS); // When using Chinese script library TextRecognizer recognizer = TextRecognition.getClient(new ChineseTextRecognizerOptions.Builder().build()); // When using Devanagari script library TextRecognizer recognizer = TextRecognition.getClient(new DevanagariTextRecognizerOptions.Builder().build()); // When using Japanese script library TextRecognizer recognizer = TextRecognition.getClient(new JapaneseTextRecognizerOptions.Builder().build()); // When using Korean script library TextRecognizer recognizer = TextRecognition.getClient(new KoreanTextRecognizerOptions.Builder().build());
2. इनपुट इमेज तैयार करें
किसी इमेज में मौजूद टेक्स्ट की पहचान करने के लिए, यहां से एक InputImage
ऑब्जेक्ट बनाएं
या तो Bitmap
, media.Image
, ByteBuffer
, बाइट अरे या
डिवाइस. इसके बाद, InputImage
ऑब्जेक्ट को
TextRecognizer
का processImage
तरीका.
एक InputImage
बनाया जा सकता है
अलग-अलग सोर्स के ऑब्जेक्ट के बारे में बताया गया है. हर ऑब्जेक्ट के बारे में नीचे बताया गया है.
media.Image
का इस्तेमाल करके
InputImage
बनाने के लिए
किसी media.Image
ऑब्जेक्ट से मिला ऑब्जेक्ट, जैसे कि जब आप किसी ऑब्जेक्ट से इमेज कैप्चर करते हैं
फ़ोन का कैमरा इस्तेमाल करने के लिए, media.Image
ऑब्जेक्ट को पास करें और इमेज के
InputImage.fromMediaImage()
का रोटेशन.
अगर आपको
CameraX लाइब्रेरी, OnImageCapturedListener
, और
ImageAnalysis.Analyzer
क्लास, रोटेशन वैल्यू को कैलकुलेट करती हैं
आपके लिए.
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy) { val mediaImage = imageProxy.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { Image mediaImage = imageProxy.getImage(); if (mediaImage != null) { InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees()); // Pass image to an ML Kit Vision API // ... } } }
अगर इमेज का रोटेशन डिग्री देने वाली कैमरा लाइब्रेरी का इस्तेमाल नहीं किया जाता, तो डिवाइस की रोटेशन डिग्री और कैमरे के ओरिएंटेशन से इसका हिसाब लगा सकता है डिवाइस में सेंसर:
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 0) ORIENTATIONS.append(Surface.ROTATION_90, 90) ORIENTATIONS.append(Surface.ROTATION_180, 180) ORIENTATIONS.append(Surface.ROTATION_270, 270) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // Get the device's sensor orientation. val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360 } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360 } return rotationCompensation }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 0); ORIENTATIONS.append(Surface.ROTATION_90, 90); ORIENTATIONS.append(Surface.ROTATION_180, 180); ORIENTATIONS.append(Surface.ROTATION_270, 270); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // Get the device's sensor orientation. CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360; } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360; } return rotationCompensation; }
इसके बाद, media.Image
ऑब्जेक्ट को पास करें और
InputImage.fromMediaImage()
डिग्री पर घुमाव:
Kotlin
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
फ़ाइल यूआरआई का इस्तेमाल करना
InputImage
बनाने के लिए
किसी फ़ाइल यूआरआई से ऑब्जेक्ट को जोड़ने के लिए, ऐप्लिकेशन संदर्भ और फ़ाइल यूआरआई को
InputImage.fromFilePath()
. यह तब काम आता है, जब
उपयोगकर्ता को चुनने का प्रॉम्प्ट भेजने के लिए, ACTION_GET_CONTENT
इंटेंट का इस्तेमाल करें
अपने गैलरी ऐप्लिकेशन से मिली इमेज शामिल करेगा.
Kotlin
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
ByteBuffer
या ByteArray
का इस्तेमाल करना
InputImage
बनाने के लिए
ByteBuffer
या ByteArray
से लिया गया ऑब्जेक्ट है, तो पहले इमेज की गणना करें
media.Image
इनपुट के लिए पहले बताई गई रोटेशन डिग्री.
इसके बाद, इमेज के साथ बफ़र या अरे का इस्तेमाल करके, InputImage
ऑब्जेक्ट बनाएं
ऊंचाई, चौड़ाई, कलर एन्कोडिंग फ़ॉर्मैट, और रोटेशन डिग्री:
Kotlin
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ) // Or: val image = InputImage.fromByteArray( byteArray, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
Java
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ); // Or: InputImage image = InputImage.fromByteArray( byteArray, /* image width */480, /* image height */360, rotation, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
Bitmap
का इस्तेमाल करके
InputImage
बनाने के लिए
Bitmap
ऑब्जेक्ट में बनाए गए ऑब्जेक्ट के लिए, यह एलान करें:
Kotlin
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
इमेज को Bitmap
ऑब्जेक्ट से, रोटेशन डिग्री के साथ दिखाया गया है.
3. इमेज प्रोसेस करें
process
तरीके से इमेज पास करें:
Kotlin
val result = recognizer.process(image) .addOnSuccessListener { visionText -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Java
Task<Text> result = recognizer.process(image) .addOnSuccessListener(new OnSuccessListener<Text>() { @Override public void onSuccess(Text visionText) { // Task completed successfully // ... } }) .addOnFailureListener( new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
4. पहचाने गए टेक्स्ट के ब्लॉक से टेक्स्ट निकालें
अगर टेक्स्ट की पहचान करने की कार्रवाई पूरी हो जाती है, तो Text
ऑब्जेक्ट को
सफलता की कहानी बयां करते हैं. Text
ऑब्जेक्ट में पूरा टेक्स्ट शामिल है, जिसकी पहचान की गई है
इमेज और शून्य या उससे ज़्यादा TextBlock
ऑब्जेक्ट.
हर TextBlock
टेक्स्ट के आयताकार ब्लॉक को दिखाता है.
जिसमें शून्य या ज़्यादा Line
ऑब्जेक्ट हैं. हर
Line
ऑब्जेक्ट, टेक्स्ट की ऐसी लाइन दिखाता है जिसमें शून्य है
या ज़्यादा Element
ऑब्जेक्ट. हर Element
ऑब्जेक्ट किसी शब्द या शब्द जैसी इकाई का प्रतिनिधित्व करता है, जिसमें शून्य या उससे ज़्यादा होता है
Symbol
ऑब्जेक्ट. हर Symbol
ऑब्जेक्ट किसी वर्ण, अंक या शब्द जैसी इकाई को दिखाता है.
हर TextBlock
, Line
के लिए,
Element
और Symbol
ऑब्जेक्ट, आप
के बाउंडिंग निर्देशांक में, क्षेत्र में टेक्स्ट की पहचान की जा सकती है
क्षेत्र और कई अन्य एट्रिब्यूट, जैसे कि रोटेशन की जानकारी, कॉन्फ़िडेंस स्कोर
वगैरह
उदाहरण के लिए:
Kotlin
val resultText = result.text for (block in result.textBlocks) { val blockText = block.text val blockCornerPoints = block.cornerPoints val blockFrame = block.boundingBox for (line in block.lines) { val lineText = line.text val lineCornerPoints = line.cornerPoints val lineFrame = line.boundingBox for (element in line.elements) { val elementText = element.text val elementCornerPoints = element.cornerPoints val elementFrame = element.boundingBox } } }
Java
String resultText = result.getText(); for (Text.TextBlock block : result.getTextBlocks()) { String blockText = block.getText(); Point[] blockCornerPoints = block.getCornerPoints(); Rect blockFrame = block.getBoundingBox(); for (Text.Line line : block.getLines()) { String lineText = line.getText(); Point[] lineCornerPoints = line.getCornerPoints(); Rect lineFrame = line.getBoundingBox(); for (Text.Element element : line.getElements()) { String elementText = element.getText(); Point[] elementCornerPoints = element.getCornerPoints(); Rect elementFrame = element.getBoundingBox(); for (Text.Symbol symbol : element.getSymbols()) { String symbolText = symbol.getText(); Point[] symbolCornerPoints = symbol.getCornerPoints(); Rect symbolFrame = symbol.getBoundingBox(); } } } }
इनपुट इमेज के लिए दिशा-निर्देश
-
एमएल किट टेक्स्ट की सटीक पहचान कर सके, इसके लिए इनपुट इमेज में ये चीज़ें होनी चाहिए ज़रूरत के मुताबिक पिक्सल डेटा से दिखाया जाने वाला टेक्स्ट. आम तौर पर, हर वर्ण कम से कम 16x16 पिक्सल का होना चाहिए. आम तौर पर, यह 24x24 पिक्सल से ज़्यादा बड़े वर्णों के लिए, सटीक होने का फ़ायदा देता है.
उदाहरण के लिए, बिज़नेस कार्ड को स्कैन करने के लिए, 640x480 की इमेज अच्छी तरह से काम कर सकती है जो इमेज की पूरी चौड़ाई में समा जाता है. प्रिंट किए गए दस्तावेज़ को स्कैन करने के लिए अक्षर के साइज़ के पेपर के साथ, 720x1280 पिक्सल की इमेज की ज़रूरत पड़ सकती है.
-
इमेज पर फ़ोकस खराब होने से, टेक्स्ट की पहचान करने के तरीके पर असर पड़ सकता है. अगर आपको सही नतीजे पाने के लिए, उपयोगकर्ता को इमेज दोबारा कैप्चर करने के लिए कहें.
-
अगर आपको किसी रीयल-टाइम ऐप्लिकेशन में टेक्स्ट की पहचान करनी है, तो आपको इनपुट इमेज के सभी डाइमेंशन पर ध्यान दें. इससे छोटा तो इमेज को तेज़ी से प्रोसेस किया जा सकता है. इंतज़ार का समय कम करने के लिए, पक्का करें कि टेक्स्ट उतना ही जगह ले रहा हो जितना और कम रिज़ॉल्यूशन में इमेज कैप्चर करें (सटीक जानकारी को ध्यान में रखते हुए) ज़रूरतों के बारे में ऊपर बताया गया है). ज़्यादा जानकारी के लिए, यह देखें परफ़ॉर्मेंस को बेहतर बनाने के लिए सलाह.
परफ़ॉर्मेंस को बेहतर बनाने के लिए सलाह
- अगर आपको
Camera
याcamera2
एपीआई, डिटेक्टर को कॉल थ्रॉटल करती हूँ. अगर किसी नए वीडियो पर डिटेक्टर के चलने के दौरान फ़्रेम उपलब्ध हो जाता है, फ़्रेम छोड़ दें. ज़्यादा जानकारी के लिए, उदाहरण के लिए, क्विकस्टार्ट सैंपल ऐप्लिकेशन मेंVisionProcessorBase
क्लास. - अगर
CameraX
एपीआई का इस्तेमाल किया जाता है, तो पक्का करें कि बैक प्रेशर स्ट्रेटजी अपनी डिफ़ॉल्ट वैल्यू पर सेट हैImageAnalysis.STRATEGY_KEEP_ONLY_LATEST
. इससे यह गारंटी मिलती है कि विश्लेषण के लिए एक बार में सिर्फ़ एक इमेज डिलीवर की जाएगी. अगर और इमेज जब एनालाइज़र व्यस्त होता है, तो उसे जनरेट कर दिया जाता है. उसे अपने-आप हटा दिया जाता है. डिलीवरी. जिस इमेज की जांच की जा रही है उसे बंद करने के लिए, इस नंबर पर कॉल करें Imageप्रॉक्सी.close(), अगली सबसे नई इमेज डिलीवर की जाएगी. - अगर ग्राफ़िक ओवरले करने के लिए डिटेक्टर के आउटपुट का इस्तेमाल किया जाता है, तो
इनपुट इमेज को चुनने के बाद, पहले एमएल किट से नतीजा पाएं. इसके बाद, इमेज को रेंडर करें
और ओवरले को एक ही चरण में पूरा करें. यह डिसप्ले की सतह पर रेंडर हो जाता है
हर इनपुट फ़्रेम के लिए सिर्फ़ एक बार. ज़्यादा जानकारी के लिए,
CameraSourcePreview
और उदाहरण के लिए, क्विकस्टार्ट सैंपल ऐप्लिकेशन मेंGraphicOverlay
क्लास. - Camera2 API का इस्तेमाल करने पर, इमेज यहां कैप्चर करें
ImageFormat.YUV_420_888
फ़ॉर्मैट. अगर पुराने Camera API का इस्तेमाल किया जा रहा है, तो इमेज यहां कैप्चर करेंImageFormat.NV21
फ़ॉर्मैट. - कम रिज़ॉल्यूशन वाली इमेज कैप्चर करें. हालांकि, यह भी ध्यान रखें कि इस एपीआई की इमेज डाइमेंशन से जुड़ी ज़रूरी शर्तें.