تصنيف المواضيع باستخدام حزمة تعلّم الآلة لنظام التشغيل Android

استخدِم ML Kit لإضافة ميزات تقسيم المواضيع إلى تطبيقك بسهولة.

الميزة التفاصيل
اسم حزمة تطوير البرامج (SDK) play-services-mlkit-subject-segmentation
التنفيذ غير مجمّع: يتم تنزيل النموذج ديناميكيًا باستخدام "خدمات Google Play".
تأثير حجم التطبيق زيادة حجمه بمقدار 200 كيلوبايت تقريبًا
وقت الإعداد قد يحتاج المستخدمون إلى الانتظار إلى أن يكتمل تنزيل النموذج قبل استخدامه لأول مرة.

جرّبه الآن

  • يمكنك تجربة نموذج التطبيق لاطلاع على مثال على استخدام واجهة برمجة التطبيقات هذه.

قبل البدء

  1. في ملف build.gradle على مستوى المشروع، احرص على تضمين مستودع Maven من Google في كلّ من قسمَي buildscript وallprojects.
  2. أضِف الاعتمادية لمكتبة ML Kit لتحديد الأهداف إلى ملف Gradle على مستوى التطبيق الخاص بالوحدة، والذي يكون عادةً app/build.gradle:
dependencies {
   implementation 'com.google.android.gms:play-services-mlkit-subject-segmentation:16.0.0-beta1'
}

كما ذكرنا أعلاه، يتم توفير النموذج من خلال "خدمات Google Play". يمكنك ضبط تطبيقك لتنزيل النموذج تلقائيًا على الجهاز بعد تثبيت تطبيقك من "متجر Play". لإجراء ذلك، أضِف العبارة التالية إلى ملف AndroidManifest.xml في تطبيقك:

<application ...>
      ...
      <meta-data
          android:name="com.google.mlkit.vision.DEPENDENCIES"
          android:value="subject_segment" >
      <!-- To use multiple models: android:value="subject_segment,model2,model3" -->
</application>

يمكنك أيضًا التحقّق صراحةً من توفّر النموذج وطلب تنزيله من خلال "خدمات Google Play" باستخدام واجهة برمجة التطبيقات ModuleInstallClient API.

في حال عدم تفعيل عمليات تنزيل النماذج في وقت التثبيت أو طلب تنزيل صريح، يتم تنزيل النموذج في المرة الأولى التي يتم فيها تشغيل أداة التقسيم. لا تؤدي الطلبات التي تقدّمها قبل اكتمال عملية التنزيل إلى أي نتائج.

1. تجهيز صورة الإدخال

لإجراء عملية تقسيم على صورة، أنشئ عنصرًا من النوع InputImage من Bitmap أو media.Image أو ByteBuffer أو صفيف بايت أو ملف على الجهاز.

يمكنك إنشاء عنصر InputImage من مصادر مختلفة، وسيتم شرح كل مصدر أدناه.

استخدام media.Image

لإنشاء عنصر InputImage من عنصر media.Image، مثلاً عند التقاط صورة من كاميرا الجهاز، عليك تمرير عنصر media.Image ودرجة دوران الصورة إلى InputImage.fromMediaImage().

إذا كنت تستخدِم مكتبة CameraX، تحتسِب فئتَا OnImageCapturedListener و ImageAnalysis.Analyzer قيمة التدوير نيابةً عنك.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

إذا كنت لا تستخدم مكتبة كاميرا تمنحك درجة دوران الصورة، يمكنك احتسابها من درجة دوران الجهاز واتجاه كاميرا الاستشعار في الجهاز:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

بعد ذلك، مرِّر عنصر media.Image وقيمة درجة الدوران إلى InputImage.fromMediaImage():

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

استخدام عنوان URL للملف

لإنشاء عنصر InputImage ، من معرّف موارد منتظم لملف، عليك تمرير سياق التطبيق ومعرّف الموارد المنتظم للملف إلى InputImage.fromFilePath(). يكون ذلك مفيدًا عند استخدام نية ACTION_GET_CONTENT لطلب تحديد صورة من تطبيق معرض الصور.

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

استخدام ByteBuffer أو ByteArray

لإنشاء عنصر InputImage من ByteBuffer أو ByteArray، يجب أولاً احتساب درجة دوران الصورة كما هو موضّح سابقًا لإدخال media.Image. بعد ذلك، أنشئ عنصر InputImage باستخدام المخزن المؤقت أو الصفيف، بالإضافة إلى ارتفاع الصورة وعرضها وتنسيق ترميز الألوان ودرجة دورانها:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

استخدام Bitmap

لإنشاء عنصر InputImage من عنصر Bitmap، أدخِل التعريف التالي:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

يتم تمثيل الصورة بعنصر Bitmap مع درجات الدوران.

2. إنشاء مثيل من SubjectSegmenter

تحديد خيارات أداة التقسيم

لتقسيم صورتك، عليك أولاً إنشاء مثيل من SubjectSegmenterOptions على النحو التالي:

Kotlin

val options = SubjectSegmenterOptions.Builder()
       // enable options
       .build()

Java

SubjectSegmenterOptions options = new SubjectSegmenterOptions.Builder()
        // enable options
        .build();

في ما يلي تفاصيل كل خيار:

قناع ثقة المقدّمة

يتيح لك قناع ثقة المقدّمة تمييز الهدف في المقدّمة عن الخلفية.

يتيح لك استدعاء enableForegroundConfidenceMask() في الخيارات استرداد قناع المقدّمة لاحقًا من خلال استدعاء getForegroundMask() على SubjectSegmentationResult العنصر الذي تم إرجاعه بعد معالجة الصورة.

Kotlin

val options = SubjectSegmenterOptions.Builder()
        .enableForegroundConfidenceMask()
        .build()

Java

SubjectSegmenterOptions options = new SubjectSegmenterOptions.Builder()
        .enableForegroundConfidenceMask()
        .build();
صورة نقطية في المقدّمة

وبالمثل، يمكنك أيضًا الحصول على صورة نقطية للكائن في المقدّمة.

يتيح لك استدعاء enableForegroundBitmap() في الخيارات استرداد الصورة النقطية للعناصر الأمامية لاحقًا من خلال استدعاء getForegroundBitmap() على العنصر SubjectSegmentationResult الذي يتم إرجاعه بعد معالجة الصورة.

Kotlin

val options = SubjectSegmenterOptions.Builder()
        .enableForegroundBitmap()
        .build()

Java

SubjectSegmenterOptions options = new SubjectSegmenterOptions.Builder()
        .enableForegroundBitmap()
        .build();
قناع ثقة متعدّد الأهداف

كما هو الحال مع خيارات المقدّمة، يمكنك استخدام SubjectResultOptions لتفعيل قناع الثقة لكلّ موضوع في المقدّمة على النحو التالي:

Kotlin

val subjectResultOptions = SubjectSegmenterOptions.SubjectResultOptions.Builder()
    .enableConfidenceMask()
    .build()

val options = SubjectSegmenterOptions.Builder()
    .enableMultipleSubjects(subjectResultOptions)
    .build()

Java

SubjectResultOptions subjectResultOptions =
        new SubjectSegmenterOptions.SubjectResultOptions.Builder()
            .enableConfidenceMask()
            .build()

SubjectSegmenterOptions options = new SubjectSegmenterOptions.Builder()
      .enableMultipleSubjects(subjectResultOptions)
      .build()
صورة نقطية متعددة المواضيع

وبالمثل، يمكنك تفعيل الصورة النقطية لكل موضوع:

Kotlin

val subjectResultOptions = SubjectSegmenterOptions.SubjectResultOptions.Builder()
    .enableSubjectBitmap()
    .build()

val options = SubjectSegmenterOptions.Builder()
    .enableMultipleSubjects(subjectResultOptions)
    .build()

Java

SubjectResultOptions subjectResultOptions =
      new SubjectSegmenterOptions.SubjectResultOptions.Builder()
        .enableSubjectBitmap()
        .build()

SubjectSegmenterOptions options = new SubjectSegmenterOptions.Builder()
      .enableMultipleSubjects(subjectResultOptions)
      .build()

إنشاء أداة تقسيم المواضيع

بعد تحديد خيارات SubjectSegmenterOptions، أنشئ مثيلًا SubjectSegmenter يستدعي getClient() ويمرّر الخيارات كمَعلمة:

Kotlin

val segmenter = SubjectSegmentation.getClient(options)

Java

SubjectSegmenter segmenter = SubjectSegmentation.getClient(options);

3- معالجة صورة

نقْل عنصر InputImage المُعدّ إلى طريقة process في SubjectSegmenter:

Kotlin

segmenter.process(inputImage)
    .addOnSuccessListener { result ->
        // Task completed successfully
        // ...
    }
    .addOnFailureListener { e ->
        // Task failed with an exception
        // ...
    }

Java

segmenter.process(inputImage)
    .addOnSuccessListener(new OnSuccessListener() {
            @Override
            public void onSuccess(SubjectSegmentationResult result) {
                // Task completed successfully
                // ...
            }
        })
        .addOnFailureListener(new OnFailureListener() {
            @Override
            public void onFailure(@NonNull Exception e) {
                // Task failed with an exception
                // ...
            }
        });

4. الحصول على نتيجة تقسيم المواضيع

استرداد أقنعة المقدّمة وملفات الخطوط المسطّحة

بعد المعالجة، يمكنك استرداد قناع المقدّمة لصورتك بالاتّباع getForegroundConfidenceMask() الخطوات التالية:

Kotlin

val colors = IntArray(image.width * image.height)

val foregroundMask = result.foregroundConfidenceMask
for (i in 0 until image.width * image.height) {
  if (foregroundMask[i] > 0.5f) {
    colors[i] = Color.argb(128, 255, 0, 255)
  }
}

val bitmapMask = Bitmap.createBitmap(
  colors, image.width, image.height, Bitmap.Config.ARGB_8888
)

Java

int[] colors = new int[image.getWidth() * image.getHeight()];

FloatBuffer foregroundMask = result.getForegroundConfidenceMask();
for (int i = 0; i < image.getWidth() * image.getHeight(); i++) {
  if (foregroundMask.get() > 0.5f) {
    colors[i] = Color.argb(128, 255, 0, 255);
  }
}

Bitmap bitmapMask = Bitmap.createBitmap(
      colors, image.getWidth(), image.getHeight(), Bitmap.Config.ARGB_8888
);

يمكنك أيضًا استرداد صورة نقطية لمقدمة الصورة من خلال الاتصال getForegroundBitmap():

Kotlin

val foregroundBitmap = result.foregroundBitmap

Java

Bitmap foregroundBitmap = result.getForegroundBitmap();

استرداد الأقنعة والملفات المخصّصة للصور النقطية لكلّ موضوع

وبالمثل، يمكنك استرداد القناع للعناصر المقسّمة من خلال استدعاء getConfidenceMask() على كل عنصر على النحو التالي:

Kotlin

val subjects = result.subjects

val colors = IntArray(image.width * image.height)
for (subject in subjects) {
  val mask = subject.confidenceMask
  for (i in 0 until subject.width * subject.height) {
    val confidence = mask[i]
    if (confidence > 0.5f) {
      colors[image.width * (subject.startY - 1) + subject.startX] =
          Color.argb(128, 255, 0, 255)
    }
  }
}

val bitmapMask = Bitmap.createBitmap(
  colors, image.width, image.height, Bitmap.Config.ARGB_8888
)

Java

List subjects = result.getSubjects();

int[] colors = new int[image.getWidth() * image.getHeight()];
for (Subject subject : subjects) {
  FloatBuffer mask = subject.getConfidenceMask();
  for (int i = 0; i < subject.getWidth() * subject.getHeight(); i++) {
    float confidence = mask.get();
    if (confidence > 0.5f) {
      colors[width * (subject.getStartY() - 1) + subject.getStartX()]
          = Color.argb(128, 255, 0, 255);
    }
  }
}

Bitmap bitmapMask = Bitmap.createBitmap(
  colors, image.width, image.height, Bitmap.Config.ARGB_8888
);

يمكنك أيضًا الوصول إلى الصورة النقطية لكل موضوع مقسّم على النحو التالي:

Kotlin

val bitmaps = mutableListOf()
for (subject in subjects) {
  bitmaps.add(subject.bitmap)
}

Java

List bitmaps = new ArrayList<>();
for (Subject subject : subjects) {
  bitmaps.add(subject.getBitmap());
}

نصائح لتحسين الأداء

في كل جلسة تطبيق، غالبًا ما تكون عملية الاستنتاج الأولى أبطأ من عمليات الاستنتاج اللاحقة بسبب بدء تشغيل النموذج. إذا كان وقت الاستجابة المنخفض مهمًا، ننصحك باستدعاء استنتاج "زائف" مسبقًا.

تعتمد جودة النتائج على جودة الصورة المُدخلة:

  • لكي تحصل حزمة ML Kit على نتيجة تقسيم دقيقة، يجب أن تكون الصورة بدقة 512x512 بكسل على الأقل.
  • يمكن أن يؤثر أيضًا عدم تركيز الصورة في الدقة. إذا لم تحصل على نتائج مقبولة، اطلب من المستخدم إعادة التقاط الصورة.