Android에서 커스텀 분류 모델을 사용하여 객체 감지, 추적, 분류

ML Kit를 사용하면 연속적인 동영상 프레임에서 객체를 감지하고 추적할 수 있습니다.

ML Kit에 이미지를 전달하면 이미지에서 각 객체의 위치와 함께 최대 5개의 객체를 감지합니다. 동영상 스트림에서 객체를 감지할 때 각 객체에는 프레임 간에 객체를 추적하는 데 사용할 수 있는 고유 ID가 있습니다.

커스텀 이미지 분류 모델을 사용하여 감지된 객체를 분류할 수 있습니다. 모델 호환성 요구사항, 선행 학습된 모델을 찾을 수 있는 위치, 자체 모델을 학습시키는 방법에 대한 안내는 ML Kit가 있는 커스텀 모델을 참조하세요.

커스텀 모델을 통합하는 방법에는 두 가지가 있습니다. 앱의 애셋 폴더에 모델을 넣어 번들로 묶거나 Firebase에서 동적으로 다운로드할 수 있습니다. 다음 표에서는 두 옵션을 비교합니다.

번들된 모델 호스팅된 모델
모델이 앱 APK의 일부이므로 모델 크기가 늘어납니다. 모델이 APK의 일부가 아닙니다. Firebase 머신러닝에 업로드하여 호스팅됩니다.
Android 기기가 오프라인 상태일 때도 모델을 즉시 사용할 수 있음 모델이 요청 시 다운로드됨
Firebase 프로젝트가 필요 없음 Firebase 프로젝트 필요
모델을 업데이트하려면 앱을 다시 게시해야 합니다. 앱을 다시 게시하지 않고 모델 업데이트 푸시
기본 제공되는 A/B 테스트 없음 Firebase 원격 구성으로 간편하게 A/B 테스트

사용해 보기

시작하기 전에

  1. 프로젝트 수준 build.gradle 파일의 buildscriptallprojects 섹션에 Google의 Maven 저장소가 포함되어야 합니다.

  2. 모듈의 앱 수준 Gradle 파일(일반적으로 app/build.gradle)에 ML Kit Android 라이브러리의 종속 항목을 추가합니다.

    모델을 앱과 번들로 묶는 방법은 다음과 같습니다.

    dependencies {
      // ...
      // Object detection & tracking feature with custom bundled model
      implementation 'com.google.mlkit:object-detection-custom:17.0.1'
    }
    

    Firebase에서 모델을 동적으로 다운로드하려면 linkFirebase 종속 항목을 추가합니다.

    dependencies {
      // ...
      // Object detection & tracking feature with model downloaded
      // from firebase
      implementation 'com.google.mlkit:object-detection-custom:17.0.1'
      implementation 'com.google.mlkit:linkfirebase:17.0.0'
    }
    
  3. 모델을 다운로드하려면 Android 프로젝트에 Firebase를 추가해야 합니다(아직 추가하지 않은 경우). 모델을 번들로 묶을 때는 이 작업이 필요하지 않습니다.

1. 모델 로드

로컬 모델 소스 구성

모델을 앱과 함께 번들로 묶는 방법은 다음과 같습니다.

  1. 일반적으로 .tflite 또는 .lite로 끝나는 모델 파일을 앱의 assets/ 폴더에 복사합니다. app/ 폴더를 마우스 오른쪽 버튼으로 클릭한 후 새로 만들기 > 폴더 > 애셋 폴더를 클릭하여 폴더부터 만들어야 할 수도 있습니다.

  2. 그런 다음 Gradle이 앱을 빌드할 때 모델 파일을 압축하지 않도록 앱의 build.gradle 파일에 다음을 추가합니다.

    android {
        // ...
        aaptOptions {
            noCompress "tflite"
            // or noCompress "lite"
        }
    }
    

    모델 파일이 앱 패키지에 포함되며 ML Kit에서 원시 애셋으로 사용할 수 있습니다.

  3. 모델 파일의 경로를 지정하여 LocalModel 객체를 만듭니다.

    Kotlin

    val localModel = LocalModel.Builder()
            .setAssetFilePath("model.tflite")
            // or .setAbsoluteFilePath(absolute file path to model file)
            // or .setUri(URI to model file)
            .build()

    Java

    LocalModel localModel =
        new LocalModel.Builder()
            .setAssetFilePath("model.tflite")
            // or .setAbsoluteFilePath(absolute file path to model file)
            // or .setUri(URI to model file)
            .build();

Firebase 호스팅 모델 소스 구성

원격 호스팅 모델을 사용하려면 FirebaseModelSourceCustomRemoteModel 객체를 만들고 모델을 게시할 때 모델에 할당한 이름을 지정합니다.

Kotlin

// Specify the name you assigned in the Firebase console.
val remoteModel =
    CustomRemoteModel
        .Builder(FirebaseModelSource.Builder("your_model_name").build())
        .build()

Java

// Specify the name you assigned in the Firebase console.
CustomRemoteModel remoteModel =
    new CustomRemoteModel
        .Builder(new FirebaseModelSource.Builder("your_model_name").build())
        .build();

이제 다운로드를 허용할 조건을 지정하여 모델 다운로드 작업을 시작합니다. 모델이 기기에 없거나 최신 버전의 모델을 사용할 수 있으면 모델이 Firebase에서 비동기식으로 다운로드됩니다.

Kotlin

val downloadConditions = DownloadConditions.Builder()
    .requireWifi()
    .build()
RemoteModelManager.getInstance().download(remoteModel, downloadConditions)
    .addOnSuccessListener {
        // Success.
    }

Java

DownloadConditions downloadConditions = new DownloadConditions.Builder()
        .requireWifi()
        .build();
RemoteModelManager.getInstance().download(remoteModel, downloadConditions)
        .addOnSuccessListener(new OnSuccessListener() {
            @Override
            public void onSuccess(@NonNull Task task) {
                // Success.
            }
        });

대부분의 앱은 초기화 코드에서 다운로드 작업을 시작하지만 모델 사용이 필요한 시점 이전에 언제든지 다운로드할 수 있습니다.

2. 객체 인식기 구성

모델 소스를 구성한 후 CustomObjectDetectorOptions 객체를 사용하여 사용 사례에 대한 객체 감지기를 구성합니다. 다음 설정을 변경할 수 있습니다.

객체 감지기 설정
감지 모드 STREAM_MODE (기본값) | SINGLE_IMAGE_MODE

STREAM_MODE(기본값)에서는 객체 감지기가 짧은 지연 시간으로 실행되지만, 감지기를 처음 몇 번 호출할 때 경계 상자 또는 카테고리 라벨이 지정되지 않는 등 불완전한 결과가 나올 수 있습니다. 또한 STREAM_MODE에서는 감지기가 객체에 추적 ID를 할당하며, 이 ID를 사용하여 여러 프레임 간에 객체를 추적할 수 있습니다. 객체를 추적하려고 하거나 실시간 동영상 스트림 처리와 같이 짧은 지연 시간이 중요한 경우에 이 모드를 사용하세요.

SINGLE_IMAGE_MODE에서 객체 인식기는 객체의 경계 상자가 결정되면 결과를 반환합니다. 분류도 사용 설정하는 경우 경계 상자와 카테고리 라벨을 모두 사용할 수 있게 되면 결과가 반환됩니다. 따라서 감지 지연 시간이 길어질 수 있습니다. 또한 SINGLE_IMAGE_MODE에서는 추적 ID가 할당되지 않습니다. 지연 시간이 중요하지 않고 부분적인 결과를 처리하지 않으려는 경우 이 모드를 사용하세요.

여러 객체 인식 및 추적 false (기본값) | true

최대 5개의 객체를 감지하고 추적할지, 아니면 가장 눈에 띄는 객체만 감지하고 추적할지 여부입니다 (기본값).

객체 분류 false (기본값) | true

제공된 맞춤 분류 기준 모델을 사용하여 감지된 객체를 분류할지 여부입니다. 커스텀 분류 모델을 사용하려면 true로 설정해야 합니다.

분류 신뢰도 기준

감지된 라벨의 최소 신뢰도 점수입니다. 설정하지 않으면 모델의 메타데이터에서 지정한 분류 기준 임계값이 사용됩니다. 모델에 메타데이터가 포함되어 있지 않거나 메타데이터가 분류 기준 임곗값을 지정하지 않으면 기본 임곗값 0.0이 사용됩니다.

객체당 최대 라벨 수

감지기가 반환할 객체당 최대 라벨 수입니다. 설정하지 않으면 기본값 10이 사용됩니다.

객체 감지 및 추적 API는 다음 2가지 핵심 사용 사례에 최적화되어 있습니다.

  • 카메라 뷰파인더에서 가장 뚜렷한 객체의 실시간 감지 및 추적
  • 정적 이미지에서 여러 객체 감지

로컬로 번들된 모델을 사용하여 이러한 사용 사례에 대한 API를 구성하려면 다음 안내를 따르세요.

Kotlin

// Live detection and tracking
val customObjectDetectorOptions =
        CustomObjectDetectorOptions.Builder(localModel)
        .setDetectorMode(CustomObjectDetectorOptions.STREAM_MODE)
        .enableClassification()
        .setClassificationConfidenceThreshold(0.5f)
        .setMaxPerObjectLabelCount(3)
        .build()

// Multiple object detection in static images
val customObjectDetectorOptions =
        CustomObjectDetectorOptions.Builder(localModel)
        .setDetectorMode(CustomObjectDetectorOptions.SINGLE_IMAGE_MODE)
        .enableMultipleObjects()
        .enableClassification()
        .setClassificationConfidenceThreshold(0.5f)
        .setMaxPerObjectLabelCount(3)
        .build()

val objectDetector =
        ObjectDetection.getClient(customObjectDetectorOptions)

Java

// Live detection and tracking
CustomObjectDetectorOptions customObjectDetectorOptions =
        new CustomObjectDetectorOptions.Builder(localModel)
                .setDetectorMode(CustomObjectDetectorOptions.STREAM_MODE)
                .enableClassification()
                .setClassificationConfidenceThreshold(0.5f)
                .setMaxPerObjectLabelCount(3)
                .build();

// Multiple object detection in static images
CustomObjectDetectorOptions customObjectDetectorOptions =
        new CustomObjectDetectorOptions.Builder(localModel)
                .setDetectorMode(CustomObjectDetectorOptions.SINGLE_IMAGE_MODE)
                .enableMultipleObjects()
                .enableClassification()
                .setClassificationConfidenceThreshold(0.5f)
                .setMaxPerObjectLabelCount(3)
                .build();

ObjectDetector objectDetector =
    ObjectDetection.getClient(customObjectDetectorOptions);

원격 호스팅 모델이 있다면 실행 전에 모델이 다운로드되었는지 확인해야 합니다. 모델 관리자의 isModelDownloaded() 메서드로 모델 다운로드 작업의 상태를 확인할 수 있습니다.

이 상태는 감지기 실행 전에만 확인하면 되지만, 원격 호스팅 모델과 로컬로 번들된 모델이 모두 있는 경우에는 이미지 감지기를 인스턴스화할 때 이 확인 작업을 수행하는 것이 합리적일 수 있습니다. 원격 모델이 다운로드되었으면 원격 모델에서, 그렇지 않으면 로컬 모델에서 감지기를 만듭니다.

Kotlin

RemoteModelManager.getInstance().isModelDownloaded(remoteModel)
    .addOnSuccessListener { isDownloaded ->
    val optionsBuilder =
        if (isDownloaded) {
            CustomObjectDetectorOptions.Builder(remoteModel)
        } else {
            CustomObjectDetectorOptions.Builder(localModel)
        }
    val customObjectDetectorOptions = optionsBuilder
            .setDetectorMode(CustomObjectDetectorOptions.SINGLE_IMAGE_MODE)
            .enableClassification()
            .setClassificationConfidenceThreshold(0.5f)
            .setMaxPerObjectLabelCount(3)
            .build()
    val objectDetector =
        ObjectDetection.getClient(customObjectDetectorOptions)
}

Java

RemoteModelManager.getInstance().isModelDownloaded(remoteModel)
    .addOnSuccessListener(new OnSuccessListener() {
        @Override
        public void onSuccess(Boolean isDownloaded) {
            CustomObjectDetectorOptions.Builder optionsBuilder;
            if (isDownloaded) {
                optionsBuilder = new CustomObjectDetectorOptions.Builder(remoteModel);
            } else {
                optionsBuilder = new CustomObjectDetectorOptions.Builder(localModel);
            }
            CustomObjectDetectorOptions customObjectDetectorOptions = optionsBuilder
                .setDetectorMode(CustomObjectDetectorOptions.SINGLE_IMAGE_MODE)
                .enableClassification()
                .setClassificationConfidenceThreshold(0.5f)
                .setMaxPerObjectLabelCount(3)
                .build();
            ObjectDetector objectDetector =
                ObjectDetection.getClient(customObjectDetectorOptions);
        }
});

원격 호스팅 모델만 있다면 모델 다운로드 여부가 확인될 때까지 모델 관련 기능을 사용 중지해야 합니다(예: UI 비활성화 또는 숨김). 모델 관리자의 download() 메서드에 리스너를 연결하여 관련 기능을 사용 중지할 수 있습니다.

Kotlin

RemoteModelManager.getInstance().download(remoteModel, conditions)
    .addOnSuccessListener {
        // Download complete. Depending on your app, you could enable the ML
        // feature, or switch from the local model to the remote model, etc.
    }

Java

RemoteModelManager.getInstance().download(remoteModel, conditions)
        .addOnSuccessListener(new OnSuccessListener() {
            @Override
            public void onSuccess(Void v) {
              // Download complete. Depending on your app, you could enable
              // the ML feature, or switch from the local model to the remote
              // model, etc.
            }
        });

3. 입력 이미지 준비

이미지에서 InputImage 객체를 만듭니다. 객체 인식기는 Bitmap, NV21 ByteBuffer 또는 YUV_420_888 media.Image에서 직접 실행됩니다. 소스 중 하나에 직접 액세스할 수 있는 경우 이러한 소스에서 InputImage를 구성하는 것이 좋습니다. 다른 소스에서 InputImage를 구성하면 내부적으로 변환을 처리하므로 효율성이 떨어질 수 있습니다.

다양한 소스에서 InputImage 객체를 만들 수 있습니다. 각 소스는 아래에 설명되어 있습니다.

media.Image 사용

기기의 카메라에서 이미지를 캡처할 때와 같이 media.Image 객체에서 InputImage 객체를 만들려면 media.Image 객체 및 이미지 회전을 InputImage.fromMediaImage()에 전달합니다.

CameraX 라이브러리를 사용하는 경우 OnImageCapturedListenerImageAnalysis.Analyzer 클래스가 회전값을 자동으로 계산합니다.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

이미지 회전 각도를 제공하는 카메라 라이브러리를 사용하지 않는 경우 기기의 카메라 센서 방향 및 기기의 회전 각도로 이미지 회전 각도를 계산할 수 있습니다.

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

그런 다음 media.Image 객체 및 회전 각도 값을 InputImage.fromMediaImage()에 전달합니다.

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

파일 URI 사용

파일 URI에서 InputImage 객체를 만들려면 앱 컨텍스트 및 파일 URI를 InputImage.fromFilePath()에 전달합니다. 이 기능은 ACTION_GET_CONTENT 인텐트를 사용하여 사용자에게 갤러리 앱에서 이미지를 선택하라는 메시지를 표시할 때 유용합니다.

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

ByteBuffer 또는 ByteArray 사용

ByteBuffer 또는 ByteArray에서 InputImage 객체를 만들려면 앞서 media.Image 입력에서 설명한 대로 이미지 회전 각도를 먼저 계산합니다. 그런 다음 이미지의 높이, 너비, 색상 인코딩 형식, 회전 각도와 함께 버퍼 또는 배열을 사용하여 InputImage 객체를 만듭니다.

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Bitmap 사용

Bitmap 객체에서 InputImage 객체를 만들려면 다음과 같이 선언합니다.

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

이미지는 회전 각도와 함께 Bitmap 객체로 표현됩니다.

4. 객체 인식기 실행

Kotlin

objectDetector
    .process(image)
    .addOnFailureListener(e -> {...})
    .addOnSuccessListener(results -> {
        for (detectedObject in results) {
          // ...
        }
    });

Java

objectDetector
    .process(image)
    .addOnFailureListener(e -> {...})
    .addOnSuccessListener(results -> {
        for (DetectedObject detectedObject : results) {
          // ...
        }
    });

5. 라벨이 지정된 객체 정보 가져오기

process() 호출이 성공하면 DetectedObject 목록이 성공 리스너에 전달됩니다.

DetectedObject에는 다음 속성이 포함됩니다.

경계 상자 이미지에서 객체의 위치를 나타내는 Rect입니다.
추적 ID 여러 이미지 간에 객체를 식별하는 정수입니다. SINGLE_IMAGE_MODE에서는 Null입니다.
라벨
라벨 설명 라벨의 텍스트 설명입니다. TensorFlow Lite 모델의 메타데이터에 라벨 설명이 포함된 경우에만 반환됩니다.
라벨 색인 분류 기준에서 지원하는 모든 라벨 중 라벨의 색인입니다.
라벨 신뢰도 객체 분류의 신뢰도 값입니다.

Kotlin

// The list of detected objects contains one item if multiple
// object detection wasn't enabled.
for (detectedObject in results) {
    val boundingBox = detectedObject.boundingBox
    val trackingId = detectedObject.trackingId
    for (label in detectedObject.labels) {
      val text = label.text
      val index = label.index
      val confidence = label.confidence
    }
}

Java

// The list of detected objects contains one item if multiple
// object detection wasn't enabled.
for (DetectedObject detectedObject : results) {
  Rect boundingBox = detectedObject.getBoundingBox();
  Integer trackingId = detectedObject.getTrackingId();
  for (Label label : detectedObject.getLabels()) {
    String text = label.getText();
    int index = label.getIndex();
    float confidence = label.getConfidence();
  }
}

우수한 사용자 경험 보장

최상의 사용자 환경을 위해 앱에서 다음 가이드라인을 따르세요.

  • 객체 인식의 성공 여부는 객체의 시각적 복잡성에 따라 달라집니다. 시각적 특징이 적은 객체를 감지하려면 이미지에서 더 많은 부분을 차지해야 할 수 있습니다. 감지할 객체 종류에서 효과적인 입력 캡처에 대한 안내를 사용자에게 제공해야 합니다.
  • 분류를 사용할 때 지원되는 카테고리로 명확하게 분류되지 않는 객체를 감지하려면 알 수 없는 객체에 대한 특수 처리를 구현합니다.

ML Kit Material Design 쇼케이스 앱 및 Material Design의 머신러닝 기반 기능 패턴 모음도 확인하세요.

성능 개선

실시간 애플리케이션에서 객체 감지를 사용하려는 경우 최상의 프레임 속도를 얻으려면 다음 안내를 따르세요.

  • 실시간 애플리케이션에서 스트리밍 모드를 사용할 때는 대부분의 기기가 적절한 프레임 속도를 생성할 수 없으므로 여러 객체 감지를 사용하지 마세요.

  • Camera 또는 camera2 API를 사용하는 경우 감지기 호출을 제한합니다. 인식기가 실행 중일 때 새 동영상 프레임이 제공되는 경우 해당 프레임을 삭제합니다. 관련 예시는 빠른 시작 샘플 앱에서 VisionProcessorBase 클래스를 참고하세요.
  • CameraX API를 사용하는 경우 백프레셔 전략이 기본값인 ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST로 설정되어 있는지 확인합니다. 이렇게 하면 분석을 위해 한 번에 하나의 이미지만 전송됩니다. 분석기 사용량이 많을 때 이미지가 추가로 생성되면 자동으로 삭제되어 전송 대기열에 추가되지 않습니다. ImageProxy.close()를 호출하여 분석 중인 이미지를 닫으면 다음 최신 이미지가 전송됩니다.
  • 인식기 출력을 사용하여 입력 이미지에서 그래픽을 오버레이하는 경우 먼저 ML Kit에서 결과를 가져온 후 이미지를 렌더링하고 단일 단계로 오버레이합니다. 이는 입력 프레임별로 한 번만 디스플레이 표면에 렌더링됩니다. 관련 예시는 빠른 시작 샘플 앱에서 CameraSourcePreview GraphicOverlay 클래스를 참조하세요.
  • Camera2 API를 사용할 경우 ImageFormat.YUV_420_888 형식으로 이미지를 캡처합니다. 이전 Camera API를 사용할 경우 ImageFormat.NV21 형식으로 이미지를 캡처합니다.