ติดป้ายกำกับรูปภาพด้วยโมเดลที่ฝึกด้วย AutoML บน Android
หลังจากฝึกโมเดลของคุณเองโดยใช้ AutoML Vision Edge แล้ว คุณจะใช้โมเดลดังกล่าวในแอปเพื่อติดป้ายกำกับรูปภาพได้ การผสานรวมโมเดลที่ฝึกจาก AutoML Vision Edge ทำได้ 2 วิธี ได้แก่ คุณสามารถรวมโมเดลโดยใส่ไว้ในโฟลเดอร์ชิ้นงานของแอป หรือจะดาวน์โหลดจาก Firebase แบบไดนามิกก็ได้ตัวเลือกการรวมโมเดล | |
---|---|
รวมไว้ในแอป |
|
โฮสต์ด้วย Firebase |
|
ลองเลย
- ลองใช้แอปตัวอย่างเพื่อดูตัวอย่างการใช้งาน API นี้
ก่อนเริ่มต้น
1. ในไฟล์build.gradle
ระดับโปรเจ็กต์ ให้ตรวจสอบว่าได้รวม
ที่เก็บ Maven ของ Google ไว้ในทั้งส่วน buildscript
และ
allprojects
2. เพิ่มทรัพยากร Dependency สำหรับไลบรารี Android ของ ML Kit ลงในไฟล์ Gradle ระดับแอปของโมดูล ซึ่งโดยปกติคือ
app/build.gradle
:
หากต้องการรวมโมเดลไว้กับแอป ให้ทำดังนี้
dependencies { // ... // Image labeling feature with bundled automl model implementation 'com.google.mlkit:image-labeling-automl:16.2.1' }
linkFirebase
ดังนี้
dependencies { // ... // Image labeling feature with automl model downloaded // from firebase implementation 'com.google.mlkit:image-labeling-automl:16.2.1' implementation 'com.google.mlkit:linkfirebase:16.0.1' }
1. โหลดโมเดล
กำหนดค่าแหล่งที่มาของโมเดลในเครื่อง
วิธีรวมโมเดลกับแอป1. แตกไฟล์โมเดลและข้อมูลเมตาจากไฟล์เก็บถาวร ZIP ที่คุณดาวน์โหลด จากคอนโซล Firebase เราขอแนะนำให้คุณใช้ไฟล์ตามที่ดาวน์โหลด โดยไม่ต้องแก้ไข (รวมถึงชื่อไฟล์)
2. รวมโมเดลและไฟล์ข้อมูลเมตาของโมเดลไว้ในแพ็กเกจแอป
ก. หากไม่มีโฟลเดอร์ชิ้นงานในโปรเจ็กต์ ให้สร้างโฟลเดอร์โดย คลิกขวาที่โฟลเดอร์
app/
แล้วคลิก
ใหม่ > โฟลเดอร์ > โฟลเดอร์ชิ้นงานข. สร้างโฟลเดอร์ย่อยในโฟลเดอร์ชิ้นงานเพื่อเก็บไฟล์โมเดล
ค. คัดลอกไฟล์
model.tflite
, dict.txt
และ manifest.json
ไปยังโฟลเดอร์ย่อย (ไฟล์ทั้ง 3 รายการต้องอยู่ในโฟลเดอร์เดียวกัน)3. เพิ่มโค้ดต่อไปนี้ลงในไฟล์
build.gradle
ของแอปเพื่อให้แน่ใจว่า
Gradle จะไม่บีบอัดไฟล์โมเดลเมื่อสร้างแอป
android { // ... aaptOptions { noCompress "tflite" } }
หมายเหตุ: ตั้งแต่ปลั๊กอิน Android Gradle เวอร์ชัน 4.1 เป็นต้นไป ระบบจะเพิ่ม .tflite ลงในรายการ noCompress โดยค่าเริ่มต้น และไม่จำเป็นต้องดำเนินการข้างต้นอีกต่อไป
4. สร้างออบเจ็กต์
LocalModel
โดยระบุเส้นทางไปยังไฟล์ Manifest ของโมเดล
Kotlin
val localModel = AutoMLImageLabelerLocalModel.Builder() .setAssetFilePath("manifest.json") // or .setAbsoluteFilePath(absolute file path to manifest file) .build()
Java
AutoMLImageLabelerLocalModel localModel = new AutoMLImageLabelerLocalModel.Builder() .setAssetFilePath("manifest.json") // or .setAbsoluteFilePath(absolute file path to manifest file) .build();
กำหนดค่าแหล่งที่มาของโมเดลที่โฮสต์ใน Firebase
หากต้องการใช้โมเดลที่โฮสต์จากระยะไกล ให้สร้างออบเจ็กต์ RemoteModel
โดยระบุชื่อที่คุณกำหนดให้กับโมเดลเมื่อเผยแพร่
Kotlin
// Specify the name you assigned in the Firebase console. val remoteModel = AutoMLImageLabelerRemoteModel.Builder("your_model_name").build()
Java
// Specify the name you assigned in the Firebase console. AutoMLImageLabelerRemoteModel remoteModel = new AutoMLImageLabelerRemoteModel.Builder("your_model_name").build();
จากนั้นเริ่มงานดาวน์โหลดโมเดล โดยระบุเงื่อนไขที่คุณต้องการอนุญาตให้ดาวน์โหลด หากโมเดลไม่ได้อยู่ในอุปกรณ์ หรือหากมีโมเดลเวอร์ชันใหม่กว่า งานจะดาวน์โหลดโมเดลจาก Firebase แบบไม่พร้อมกัน
Kotlin
val downloadConditions = DownloadConditions.Builder() .requireWifi() .build() RemoteModelManager.getInstance().download(remoteModel, downloadConditions) .addOnSuccessListener { // Success. }
Java
DownloadConditions downloadConditions = new DownloadConditions.Builder() .requireWifi() .build(); RemoteModelManager.getInstance().download(remoteModel, downloadConditions) .addOnSuccessListener(new OnSuccessListener() { @Override public void onSuccess(@NonNull Task task) { // Success. } });
แอปจำนวนมากจะเริ่มงานดาวน์โหลดในโค้ดการเริ่มต้น แต่คุณ สามารถทำได้ทุกเมื่อก่อนที่จะต้องใช้โมเดล
สร้างโปรแกรมติดป้ายกำกับรูปภาพจากโมเดล
หลังจากกำหนดค่าแหล่งที่มาของโมเดลแล้ว ให้สร้างออบเจ็กต์ ImageLabeler
จากแหล่งที่มาใดแหล่งที่มาหนึ่ง
หากมีเฉพาะโมเดลที่รวมไว้ในเครื่อง ให้สร้างโปรแกรมติดป้ายกำกับจากออบเจ็กต์ AutoMLImageLabelerLocalModel
และกำหนดค่าเกณฑ์คะแนนความเชื่อมั่นที่คุณต้องการ (ดูประเมินโมเดล)
Kotlin
val autoMLImageLabelerOptions = AutoMLImageLabelerOptions.Builder(localModel) .setConfidenceThreshold(0) // Evaluate your model in the Firebase console // to determine an appropriate value. .build() val labeler = ImageLabeling.getClient(autoMLImageLabelerOptions)
Java
AutoMLImageLabelerOptions autoMLImageLabelerOptions = new AutoMLImageLabelerOptions.Builder(localModel) .setConfidenceThreshold(0.0f) // Evaluate your model in the Firebase console // to determine an appropriate value. .build(); ImageLabeler labeler = ImageLabeling.getClient(autoMLImageLabelerOptions)
หากมีโมเดลที่โฮสต์จากระยะไกล คุณจะต้องตรวจสอบว่าได้
ดาวน์โหลดโมเดลแล้วก่อนที่จะเรียกใช้ คุณตรวจสอบสถานะของงานดาวน์โหลดโมเดลได้โดยใช้เมธอด isModelDownloaded()
ของตัวจัดการโมเดล
แม้ว่าคุณจะต้องยืนยันเรื่องนี้ก่อนเรียกใช้เครื่องมือติดป้ายกำกับเท่านั้น แต่หากคุณมีทั้งโมเดลที่โฮสต์จากระยะไกลและโมเดลที่รวมไว้ในเครื่อง การตรวจสอบนี้อาจมีประโยชน์เมื่อสร้างอินสแตนซ์ของเครื่องมือติดป้ายกำกับรูปภาพ กล่าวคือ สร้างเครื่องมือติดป้ายกำกับจากโมเดลระยะไกลหากดาวน์โหลดแล้ว และจากโมเดลในเครื่องหากยังไม่ได้ดาวน์โหลด
Kotlin
RemoteModelManager.getInstance().isModelDownloaded(remoteModel) .addOnSuccessListener { isDownloaded -> val optionsBuilder = if (isDownloaded) { AutoMLImageLabelerOptions.Builder(remoteModel) } else { AutoMLImageLabelerOptions.Builder(localModel) } // Evaluate your model in the Firebase console to determine an appropriate threshold. val options = optionsBuilder.setConfidenceThreshold(0.0f).build() val labeler = ImageLabeling.getClient(options) }
Java
RemoteModelManager.getInstance().isModelDownloaded(remoteModel) .addOnSuccessListener(new OnSuccessListener() { @Override public void onSuccess(Boolean isDownloaded) { AutoMLImageLabelerOptions.Builder optionsBuilder; if (isDownloaded) { optionsBuilder = new AutoMLImageLabelerOptions.Builder(remoteModel); } else { optionsBuilder = new AutoMLImageLabelerOptions.Builder(localModel); } AutoMLImageLabelerOptions options = optionsBuilder .setConfidenceThreshold(0.0f) // Evaluate your model in the Firebase console // to determine an appropriate threshold. .build(); ImageLabeler labeler = ImageLabeling.getClient(options); } });
หากมีเฉพาะโมเดลที่โฮสต์จากระยะไกล คุณควรปิดใช้ฟังก์ชันการทำงานที่เกี่ยวข้องกับโมเดล เช่น ทำให้ส่วนหนึ่งของ UI เป็นสีเทาหรือซ่อนไว้ จนกว่าคุณจะยืนยันว่าดาวน์โหลดโมเดลแล้ว คุณทำได้โดยแนบ Listener
ไปยังเมธอด download()
ของ Model Manager ดังนี้
Kotlin
RemoteModelManager.getInstance().download(remoteModel, conditions) .addOnSuccessListener { // Download complete. Depending on your app, you could enable the ML // feature, or switch from the local model to the remote model, etc. }
Java
RemoteModelManager.getInstance().download(remoteModel, conditions) .addOnSuccessListener(new OnSuccessListener() { @Override public void onSuccess(Void v) { // Download complete. Depending on your app, you could enable // the ML feature, or switch from the local model to the remote // model, etc. } });
2. เตรียมรูปภาพอินพุต
จากนั้นสร้างInputImage
ออบเจ็กต์จากรูปภาพสำหรับแต่ละรูปภาพที่ต้องการติดป้ายกำกับ โปรแกรมติดป้ายกำกับรูปภาพจะทำงานได้เร็วที่สุดเมื่อคุณใช้ Bitmap
หรือหากใช้ Camera2 API ก็ใช้ YUV_420_888 media.Image
ซึ่งเป็นรูปแบบที่
แนะนำเมื่อเป็นไปได้
คุณสร้างInputImage
ออบเจ็กต์จากแหล่งที่มาต่างๆ ได้ โดยแต่ละแหล่งที่มามีคำอธิบายอยู่ด้านล่าง
การใช้ media.Image
หากต้องการสร้างออบเจ็กต์ InputImage
จากออบเจ็กต์ media.Image
เช่น เมื่อจับภาพจากกล้องของอุปกรณ์ ให้ส่งออบเจ็กต์ media.Image
และการหมุนของรูปภาพไปยัง InputImage.fromMediaImage()
หากใช้ไลบรารี
CameraX คลาส OnImageCapturedListener
และ
ImageAnalysis.Analyzer
จะคํานวณค่าการหมุน
ให้คุณ
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy) { val mediaImage = imageProxy.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { Image mediaImage = imageProxy.getImage(); if (mediaImage != null) { InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees()); // Pass image to an ML Kit Vision API // ... } } }
หากไม่ได้ใช้คลังกล้องที่ให้องศาการหมุนของรูปภาพ คุณ สามารถคำนวณได้จากองศาการหมุนของอุปกรณ์และการวางแนวของเซ็นเซอร์กล้อง ในอุปกรณ์
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 0) ORIENTATIONS.append(Surface.ROTATION_90, 90) ORIENTATIONS.append(Surface.ROTATION_180, 180) ORIENTATIONS.append(Surface.ROTATION_270, 270) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // Get the device's sensor orientation. val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360 } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360 } return rotationCompensation }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 0); ORIENTATIONS.append(Surface.ROTATION_90, 90); ORIENTATIONS.append(Surface.ROTATION_180, 180); ORIENTATIONS.append(Surface.ROTATION_270, 270); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // Get the device's sensor orientation. CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360; } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360; } return rotationCompensation; }
จากนั้นส่งmedia.Image
ออบเจ็กต์และค่าองศาการหมุนไปยัง InputImage.fromMediaImage()
:
Kotlin
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
การใช้ URI ของไฟล์
หากต้องการสร้างออบเจ็กต์ InputImage
จาก URI ของไฟล์ ให้ส่งบริบทของแอปและ URI ของไฟล์ไปยัง
InputImage.fromFilePath()
ซึ่งจะมีประโยชน์เมื่อคุณ
ใช้ACTION_GET_CONTENT
Intent เพื่อแจ้งให้ผู้ใช้เลือก
รูปภาพจากแอปแกลเลอรี
Kotlin
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
การใช้ ByteBuffer
หรือ ByteArray
หากต้องการสร้างออบเจ็กต์ InputImage
จาก ByteBuffer
หรือ ByteArray
ให้คำนวณองศาการหมุนของรูปภาพก่อน
ตามที่อธิบายไว้ก่อนหน้านี้สำหรับอินพุต media.Image
จากนั้นสร้างออบเจ็กต์ InputImage
ด้วยบัฟเฟอร์หรืออาร์เรย์ พร้อมกับความสูง ความกว้าง รูปแบบการเข้ารหัสสี และองศาการหมุนของรูปภาพ
Kotlin
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ) // Or: val image = InputImage.fromByteArray( byteArray, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
Java
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ); // Or: InputImage image = InputImage.fromByteArray( byteArray, /* image width */480, /* image height */360, rotation, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
การใช้ Bitmap
หากต้องการสร้างออบเจ็กต์ InputImage
จากออบเจ็กต์ Bitmap
ให้ประกาศดังนี้
Kotlin
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
รูปภาพแสดงด้วยออบเจ็กต์ Bitmap
พร้อมกับองศาการหมุน
3. เรียกใช้เครื่องมือติดป้ายกำกับรูปภาพ
หากต้องการติดป้ายกำกับวัตถุในรูปภาพ ให้ส่งimage
วัตถุไปยังเมธอด ImageLabeler
's
process()
Kotlin
labeler.process(image) .addOnSuccessListener { labels -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Java
labeler.process(image) .addOnSuccessListener(new OnSuccessListener<List<ImageLabel>>() { @Override public void onSuccess(List<ImageLabel> labels) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
4. ดูข้อมูลเกี่ยวกับออบเจ็กต์ที่มีป้ายกำกับ
หากการติดป้ายกำกับรูปภาพสำเร็จ ระบบจะส่งรายการออบเจ็กต์ ImageLabel
ไปยังเครื่องมือฟังที่สำเร็จ ออบเจ็กต์ ImageLabel
แต่ละรายการแสดงถึง
สิ่งที่ติดป้ายกำกับในรูปภาพ คุณจะดูคำอธิบายข้อความของแต่ละป้ายกำกับ คะแนนความเชื่อมั่นของการจับคู่ และดัชนีของการจับคู่ได้
เช่น
Kotlin
for (label in labels) { val text = label.text val confidence = label.confidence val index = label.index }
Java
for (ImageLabel label : labels) { String text = label.getText(); float confidence = label.getConfidence(); int index = label.getIndex(); }
เคล็ดลับในการปรับปรุงประสิทธิภาพแบบเรียลไทม์
หากต้องการติดป้ายกำกับรูปภาพในแอปพลิเคชันแบบเรียลไทม์ ให้ทำตาม หลักเกณฑ์เหล่านี้เพื่อให้ได้อัตราเฟรมที่ดีที่สุด
- หากคุณใช้ API ของ
Camera
หรือcamera2
ให้จำกัดการเรียกใช้เครื่องติดป้ายกำกับรูปภาพ หากมีเฟรมวิดีโอใหม่ ขณะที่เครื่องมือติดป้ายกำกับรูปภาพทำงานอยู่ ให้ทิ้งเฟรมนั้น ดูตัวอย่างได้ที่คลาสVisionProcessorBase
ในแอปตัวอย่างการเริ่มต้นอย่างรวดเร็ว - หากคุณใช้
CameraX
API โปรดตรวจสอบว่าได้ตั้งค่ากลยุทธ์การควบคุมปริมาณการรับส่งเป็นค่าเริ่มต้นImageAnalysis.STRATEGY_KEEP_ONLY_LATEST
ซึ่งจะรับประกันว่าระบบจะส่งรูปภาพเพียงรูปเดียวเพื่อวิเคราะห์ในแต่ละครั้ง หากมีการสร้างรูปภาพเพิ่มเติมเมื่อเครื่องมือวิเคราะห์ทำงานอยู่ ระบบจะทิ้งรูปภาพเหล่านั้นโดยอัตโนมัติและจะไม่จัดคิวเพื่อส่ง เมื่อปิดรูปภาพที่กำลังวิเคราะห์โดยเรียกใช้ ImageProxy.close() ระบบจะส่งรูปภาพล่าสุดถัดไป - หากคุณใช้เอาต์พุตของเครื่องมือติดป้ายกำกับรูปภาพเพื่อซ้อนทับกราฟิกบน
รูปภาพอินพุต ให้รับผลลัพธ์จาก ML Kit ก่อน จากนั้นจึงแสดงรูปภาพ
และซ้อนทับในขั้นตอนเดียว ซึ่งจะแสดงในพื้นผิวการแสดงผล
เพียงครั้งเดียวสำหรับแต่ละเฟรมอินพุต ดูตัวอย่างได้ที่คลาส
CameraSourcePreview
และGraphicOverlay
ในแอปตัวอย่างการเริ่มต้นอย่างรวดเร็ว - หากใช้ API ของ Camera2 ให้ถ่ายภาพในรูปแบบ
ImageFormat.YUV_420_888
หากใช้ Camera API เวอร์ชันเก่า ให้ถ่ายภาพในรูปแบบImageFormat.NV21