Brooks, S. Gelman, A. Dönüşüm İzlemeye İlişkin Genel Yöntemler İterasyonlu/Yinelemeli Simülasyonlar, 1998.
Chen, A. Chan, D. Koehler, J. Wang, Y. Paz, Y., Şahin, Y. Perry, M. Google, Inc. Medya Karmasında Ücretli Arama İçin Önyargı Düzeltme Modelleme 2018.
Can, Mehmet. Bayes Temel Bilgileri: Uygulamayla kavramsal bir giriş R ve Stan'a dokunun. Michigan Üniversitesi'nde çalışıyorum. (11.09.2015).
Gelman, A. Rubin, D. Çoklu Kullanarak Yinelemeli Simülasyondan Çıkarım Adım sıraları 1992.
Yüksek lisans yaptı, Robins JM (2020). Nedensel Çıkarım: Ne? Eğer. Boca Raton: Chapman ve Hall/CRC.
Şahin, Y. Wang, Y. Paz, Y., Chan, D. Koehler, J. Google Inc. Bayesian Taşıma ve Şekil ile Medya Karması Modelleme Yöntemleri Efektler 2017.
Ng, E. Wang, Z. & Dai, A. Bayes Saati Değişken Katsayı Modeli Pazarlama Karması Modellemesi Uygulamaları, 2021.
İnci, Judea. Nedensellik. Cambridge University Press. (14.09.2009) ISBN 9781139643986.
Spline (matematik), Vikipedi.
Paz, Y., Wang, Y. Şahin, Y. Chan, D. Koehler, J. Google Inc. Coğrafi düzey Bayes Hiyerarşik Medya Karması Modelleme 2017.
Wang, Y. Şahin, Y. Paz, Y., Chan, D. Koehler, J. Google Inc. A Kategoriyi Kullanarak Medya Karması Modellerini İyileştirmeye Yönelik Hiyerarşik Bayes Yaklaşımı Veriler, 2017.
Zhang, Y. Wurm, M. Li, E. Wakim, A. Kübra, C. Fiyat, B. Liu, Y. Google Inc. Baesian ile Medya Karması Modeli Kalibrasyonu Öncekiler 2023.
Zhang, Y. Wurm, M. Wakim, A. Li, E. Liu, Y. Google Inc. Bayesian Erişim ve Sıklıkla Hiyerarşik Medya Karması Modeli Veri 2023.
Referanslar
Aksi belirtilmediği sürece bu sayfanın içeriği Creative Commons Atıf 4.0 Lisansı altında ve kod örnekleri Apache 2.0 Lisansı altında lisanslanmıştır. Ayrıntılı bilgi için Google Developers Site Politikaları'na göz atın. Java, Oracle ve/veya satış ortaklarının tescilli ticari markasıdır.
Son güncelleme tarihi: 2024-09-05 UTC.
[[["Anlaması kolay","easyToUnderstand","thumb-up"],["Sorunumu çözdü","solvedMyProblem","thumb-up"],["Diğer","otherUp","thumb-up"]],[["İhtiyacım olan bilgiler yok","missingTheInformationINeed","thumb-down"],["Çok karmaşık / çok fazla adım var","tooComplicatedTooManySteps","thumb-down"],["Güncel değil","outOfDate","thumb-down"],["Çeviri sorunu","translationIssue","thumb-down"],["Örnek veya kod sorunu","samplesCodeIssue","thumb-down"],["Diğer","otherDown","thumb-down"]],["Son güncelleme tarihi: 2024-09-05 UTC."],[[["This compilation of resources focuses on Bayesian methods and their applications, particularly in media mix modeling (MMM) for marketing analysis."],["Several resources explore the use of Bayesian hierarchical models, incorporating factors like carryover effects, shape effects, geographic variations, and category data to enhance MMM accuracy."],["The list also includes foundational materials on Bayesian statistics, causal inference, and convergence diagnostics for iterative simulations, providing a comprehensive understanding of the underlying concepts."],["Resources from Google researchers showcase cutting-edge advancements in MMM, including bias correction for paid search, the integration of reach and frequency data, and the utilization of Bayesian priors for model calibration."],["This collection serves as a valuable guide for researchers and practitioners seeking to leverage Bayesian techniques for advanced marketing measurement and decision-making."]]],["The documents cover Bayesian methods and their application in media mix modeling (MMM). Key topics include: bias-variance tradeoff; convergence monitoring for iterative simulations; causal inference; Bayesian hierarchical modeling to improve MMM with category data, reach, frequency, carryover, and shape effects; bias correction for paid search in MMM; and calibration of MMM using Bayesian priors. Splines and TensorFlow Probability are also mentioned, with general bayesian concepts. The work was carried out by researchers in different academic institutions or at google.\n"]]