AI-generated Key Takeaways
-
This page introduces the Google date and time dataset, focusing on the "time" canonical concept.
-
The dataset defines various time granularities like year, quarter, month, week, and day, all extending the core "time_point" concept.
-
Each time granularity concept can be used as a dimension in data slices, allowing for analysis across different time periods.
-
A comprehensive XML file and a CSV file for granularities are provided for detailed dataset structure and values.
-
The dataset is designed to standardize the representation of time within Google Public Data and can be leveraged for time-based data analysis.
This page documents the time canonical concept dataset. The complete XML file is also available for review.
Basic Info
| Name | Google date and time |
|---|---|
| Description | Google date and time dataset |
| Namespace | http://www.google.com/publicdata/dataset/google/time |
| URL | http://code.google.com/apis/publicdata/docs/canonical/time.html |
Provider
| Name | Google Inc. |
|---|---|
| Description | Google Inc. |
| URL | http://www.google.com |
Imported Namespaces
No imported namespaces.
Topics
No topics defined.
Concepts
Concept: time_point
| ID | time_point [XML] | ||||
|---|---|---|---|---|---|
| Name | Point in time | ||||
| Type | date | ||||
| Description | Point in time, with a given granularity. | ||||
| Attributes granularity |
|
||||
| Properties | No local properties. |
Concept: year
| ID | year [XML] | ||||
|---|---|---|---|---|---|
| Name | Year date | ||||
| Extends | time_point | ||||
| Description |
A date with yearly granularity. The year concept is usually used directly
in a slice definition to define a dimension that contains year. For
example, a slice for yearly population by country would be defined as
follows:
<slices>
<slice id="country_slice">
<dimension concept="country"/>
<dimension concept="time:year"/>
<metric concept="population"/>
<table ref="country_slice_table"/>
</slice>
</slices>The table definition for this slice would be defined as follows: <tables> ... <table id="country_slice_table"> <column id="country" type="text"/> <column id="year" type="date" format="yyyy"/> <column id="population" type="integer"/> <data> <file format="csv" encoding="utf-8">country_slice.csv</file> </data> </table> ... </tables> And the data contained in the CSV file for this table would look like: country, year, population AF, 1960, 9616353 AF, 1961, 9799379 AF, 1962, 9989846 AF, 1963, 10188299 ... |
||||
| Attributes granularity |
|
||||
| Properties | No local properties. |
Concept: quarter
| ID | quarter [XML] | ||||
|---|---|---|---|---|---|
| Name | Quarter date | ||||
| Extends | time_point | ||||
| Description | A date with quarterly granularity. See the example for the year concept above. | ||||
| Attributes granularity |
|
||||
| Properties | No local properties. |
Concept: month
| ID | month [XML] | ||||
|---|---|---|---|---|---|
| Name | Month date | ||||
| Extends | time_point | ||||
| Description | A date with monthly granularity. See the example for the year concept above. | ||||
| Attributes granularity |
|
||||
| Properties | No local properties. |
Concept: week
| ID | week [XML] | ||||
|---|---|---|---|---|---|
| Name | Week date | ||||
| Extends | time_point | ||||
| Description | A date with weekly granularity. See the example for the year concept above. | ||||
| Attributes granularity |
|
||||
| Properties | No local properties. |
Concept: day
| ID | day [XML] | ||||
|---|---|---|---|---|---|
| Name | Day date | ||||
| Extends | time_point | ||||
| Description | A date with daily granularity. See the example for the year concept above. | ||||
| Attributes granularity |
|
||||
| Properties | No local properties. |
Concept: granularity
| ID | granularity [XML] |
|---|---|
| Name | Granularity |
| Type | string |
| Data | granularity_table |
| Description | Granularity of time, i.e., the uncertainty that a point in time may be anywhere within some time interval. |
| Attributes | No local attributes. |
| Properties | No local properties. |
Slices
No slices defined.
Tables
Table: granularity_table
| ID | granularity_table [XML] | ||||
|---|---|---|---|---|---|
| Data | granularity.csv [CSV] | ||||
| Columns |
|