Le problème de l'atelier

L'atelier d'offres d'emploi est un problème de planification courant, dans lequel plusieurs tâches sont traitées sur plusieurs machines.

Chaque tâche consiste en une séquence de tâches, qui doivent être exécutées dans un ordre donné, et chaque tâche doit être traitée sur une machine spécifique. Il peut s'agir, par exemple, de la fabrication d'un seul article de consommation, comme une automobile. Le problème consiste à planifier les tâches sur les machines de manière à minimiser le length de la planification, c'est-à-dire le temps nécessaire à l'exécution de toutes les tâches.

Le problème de l'atelier d'emploi présente plusieurs contraintes:

  • Aucune tâche associée à une tâche ne peut être démarrée tant que la tâche précédente n'est pas terminée.
  • Une machine ne peut travailler que sur une tâche à la fois.
  • Une fois lancée, une tâche doit s'exécuter jusqu'à son achèvement.

Exemple de problème

Vous trouverez ci-dessous un exemple simple de problème d'atelier, dans lequel chaque tâche est étiquetée par une paire de nombres (m, p), où m correspond au nombre de machines sur lesquelles la tâche doit être traitée et p au temps de traitement de la tâche (la durée nécessaire). (La numérotation des tâches et des machines commence à 0.)

  • emploi 0 = [(0, 3), (1, 2), (2, 2)]
  • emploi 1 = [(0, 2), (2, 1), (1, 4)]
  • emploi 2 = [(1, 4), (2, 3)]

Dans cet exemple, le job 0 comporte trois tâches. La première (0, 3) doit être traitée sur la machine 0 en trois unités de temps. La seconde (1, 2) doit être traitée sur la machine 1 en deux unités de temps, et ainsi de suite. Au total, il y a huit tâches.

Une solution au problème

Une solution au problème de l'atelier d'emploi consiste à attribuer une heure de début à chaque tâche, qui répond aux contraintes données ci-dessus. Le diagramme ci-dessous propose une solution possible au problème : calendrier d’un emploi non optimal

Vous pouvez vérifier que les tâches de chaque tâche sont planifiées à des intervalles de temps qui ne se chevauchent pas, dans l'ordre donné par le problème.

La longueur de cette solution est de 12, ce qui est la première fois que les trois tâches sont terminées. Cependant, comme vous le verrez ci-dessous, il ne s'agit pas de la solution optimale au problème.

Variables et contraintes pour le problème

Cette section explique comment configurer les variables et les contraintes pour le problème. Tout d'abord, laissez task(i, j) désigner la tâche j dans la séquence pour la tâche i. Par exemple, task(0, 2) indique la deuxième tâche de la tâche 0, qui correspond à la paire (1, 2) dans la description du problème.

Définissez ensuite ti, j comme heure de début de task(i, j). Les ti, j sont les variables du problème de l'atelier d'emploi. Pour trouver une solution, vous devez déterminer les valeurs de ces variables qui répondent aux exigences du problème.

Il existe deux types de contraintes pour le problème de l'atelier:

  • Contraintes de priorité : elles découlent de la condition selon laquelle, pour deux tâches consécutives de la même tâche, la première doit être terminée avant que la seconde puisse être lancée. Par exemple, task(0, 2) et task(0, 3) sont des tâches consécutives pour la tâche 0. Étant donné que l'heure du traitement pour task(0, 2) est 2, l'heure de début de task(0, 3) doit être au moins 2 unités de temps après l'heure de début de la tâche 2. (La tâche 2 consiste peut-être à peindre une porte, et il faut deux heures pour que la peinture sèche.) Par conséquent, vous obtenez la contrainte suivante :
    • t0, 2 + 2 <= t0, 3
  • Pas de contraintes de chevauchement : elles sont dues à la restriction selon laquelle une machine ne peut pas travailler sur deux tâches en même temps. Par exemple, les valeurs task(0, 2) et task(2, 1) sont toutes deux traitées sur la machine 1. Étant donné que leurs temps de traitement sont respectivement de 2 et 4, l'une des contraintes suivantes doit respecter :
    • t0, 2 + 2 <= t2, 1 (si task(0, 2) est planifié avant task(2, 1)) ou
    • t2, 1 + 4 <= t0, 2 (si task(2, 1) est planifié avant task(0, 2)).

Objectif du problème

L'objectif du problème de l'atelier est de minimiser le makespan, c'est-à-dire le temps écoulé entre l'heure de début la plus proche et l'heure de fin la plus tardive.

Une solution de programme

Les sections suivantes décrivent les principaux éléments d'un programme qui résout le problème de l'atelier.

Importer les bibliothèques

Le code suivant importe la bibliothèque requise.

Python

import collections
from ortools.sat.python import cp_model

C++

#include <stdlib.h>

#include <algorithm>
#include <cstdint>
#include <map>
#include <numeric>
#include <string>
#include <tuple>
#include <vector>

#include "absl/strings/str_format.h"
#include "ortools/base/logging.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"

Java

import static java.lang.Math.max;

import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverStatus;
import com.google.ortools.sat.IntVar;
import com.google.ortools.sat.IntervalVar;
import com.google.ortools.sat.LinearExpr;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.stream.IntStream;

C#

using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
using Google.OrTools.Sat;

Définir les données

Ensuite, le programme définit les données pour le problème.

Python

jobs_data = [  # task = (machine_id, processing_time).
    [(0, 3), (1, 2), (2, 2)],  # Job0
    [(0, 2), (2, 1), (1, 4)],  # Job1
    [(1, 4), (2, 3)],  # Job2
]

machines_count = 1 + max(task[0] for job in jobs_data for task in job)
all_machines = range(machines_count)
# Computes horizon dynamically as the sum of all durations.
horizon = sum(task[1] for job in jobs_data for task in job)

C++

using Task = std::tuple<int64_t, int64_t>;  // (machine_id, processing_time)
using Job = std::vector<Task>;
std::vector<Job> jobs_data = {
    {{0, 3}, {1, 2}, {2, 2}},  // Job_0: Task_0 Task_1 Task_2
    {{0, 2}, {2, 1}, {1, 4}},  // Job_1: Task_0 Task_1 Task_2
    {{1, 4}, {2, 3}},          // Job_2: Task_0 Task_1
};

int64_t num_machines = 0;
for (const auto& job : jobs_data) {
  for (const auto& [machine, _] : job) {
    num_machines = std::max(num_machines, 1 + machine);
  }
}

std::vector<int> all_machines(num_machines);
std::iota(all_machines.begin(), all_machines.end(), 0);

// Computes horizon dynamically as the sum of all durations.
int64_t horizon = 0;
for (const auto& job : jobs_data) {
  for (const auto& [_, time] : job) {
    horizon += time;
  }
}

Java

class Task {
  int machine;
  int duration;
  Task(int machine, int duration) {
    this.machine = machine;
    this.duration = duration;
  }
}

final List<List<Task>> allJobs =
    Arrays.asList(Arrays.asList(new Task(0, 3), new Task(1, 2), new Task(2, 2)), // Job0
        Arrays.asList(new Task(0, 2), new Task(2, 1), new Task(1, 4)), // Job1
        Arrays.asList(new Task(1, 4), new Task(2, 3)) // Job2
    );

int numMachines = 1;
for (List<Task> job : allJobs) {
  for (Task task : job) {
    numMachines = max(numMachines, 1 + task.machine);
  }
}
final int[] allMachines = IntStream.range(0, numMachines).toArray();

// Computes horizon dynamically as the sum of all durations.
int horizon = 0;
for (List<Task> job : allJobs) {
  for (Task task : job) {
    horizon += task.duration;
  }
}

C#

var allJobs =
    new[] {
        new[] {
            // job0
            new { machine = 0, duration = 3 }, // task0
            new { machine = 1, duration = 2 }, // task1
            new { machine = 2, duration = 2 }, // task2
        }
            .ToList(),
        new[] {
            // job1
            new { machine = 0, duration = 2 }, // task0
            new { machine = 2, duration = 1 }, // task1
            new { machine = 1, duration = 4 }, // task2
        }
            .ToList(),
        new[] {
            // job2
            new { machine = 1, duration = 4 }, // task0
            new { machine = 2, duration = 3 }, // task1
        }
            .ToList(),
    }
        .ToList();

int numMachines = 0;
foreach (var job in allJobs)
{
    foreach (var task in job)
    {
        numMachines = Math.Max(numMachines, 1 + task.machine);
    }
}
int[] allMachines = Enumerable.Range(0, numMachines).ToArray();

// Computes horizon dynamically as the sum of all durations.
int horizon = 0;
foreach (var job in allJobs)
{
    foreach (var task in job)
    {
        horizon += task.duration;
    }
}

Déclarer le modèle

Le code suivant déclare le modèle pour le problème.

Python

model = cp_model.CpModel()

C++

CpModelBuilder cp_model;

Java

CpModel model = new CpModel();

C#

CpModel model = new CpModel();

Définir les variables

Le code suivant définit les variables du problème.

Python

# Named tuple to store information about created variables.
task_type = collections.namedtuple("task_type", "start end interval")
# Named tuple to manipulate solution information.
assigned_task_type = collections.namedtuple(
    "assigned_task_type", "start job index duration"
)

# Creates job intervals and add to the corresponding machine lists.
all_tasks = {}
machine_to_intervals = collections.defaultdict(list)

for job_id, job in enumerate(jobs_data):
    for task_id, task in enumerate(job):
        machine, duration = task
        suffix = f"_{job_id}_{task_id}"
        start_var = model.new_int_var(0, horizon, "start" + suffix)
        end_var = model.new_int_var(0, horizon, "end" + suffix)
        interval_var = model.new_interval_var(
            start_var, duration, end_var, "interval" + suffix
        )
        all_tasks[job_id, task_id] = task_type(
            start=start_var, end=end_var, interval=interval_var
        )
        machine_to_intervals[machine].append(interval_var)

C++

struct TaskType {
  IntVar start;
  IntVar end;
  IntervalVar interval;
};

using TaskID = std::tuple<int, int>;  // (job_id, task_id)
std::map<TaskID, TaskType> all_tasks;
std::map<int64_t, std::vector<IntervalVar>> machine_to_intervals;
for (int job_id = 0; job_id < jobs_data.size(); ++job_id) {
  const auto& job = jobs_data[job_id];
  for (int task_id = 0; task_id < job.size(); ++task_id) {
    const auto [machine, duration] = job[task_id];
    std::string suffix = absl::StrFormat("_%d_%d", job_id, task_id);
    IntVar start = cp_model.NewIntVar({0, horizon})
                       .WithName(std::string("start") + suffix);
    IntVar end = cp_model.NewIntVar({0, horizon})
                     .WithName(std::string("end") + suffix);
    IntervalVar interval = cp_model.NewIntervalVar(start, duration, end)
                               .WithName(std::string("interval") + suffix);

    TaskID key = std::make_tuple(job_id, task_id);
    all_tasks.emplace(key, TaskType{/*.start=*/start,
                                    /*.end=*/end,
                                    /*.interval=*/interval});
    machine_to_intervals[machine].push_back(interval);
  }
}

Java

class TaskType {
  IntVar start;
  IntVar end;
  IntervalVar interval;
}
Map<List<Integer>, TaskType> allTasks = new HashMap<>();
Map<Integer, List<IntervalVar>> machineToIntervals = new HashMap<>();

for (int jobID = 0; jobID < allJobs.size(); ++jobID) {
  List<Task> job = allJobs.get(jobID);
  for (int taskID = 0; taskID < job.size(); ++taskID) {
    Task task = job.get(taskID);
    String suffix = "_" + jobID + "_" + taskID;

    TaskType taskType = new TaskType();
    taskType.start = model.newIntVar(0, horizon, "start" + suffix);
    taskType.end = model.newIntVar(0, horizon, "end" + suffix);
    taskType.interval = model.newIntervalVar(
        taskType.start, LinearExpr.constant(task.duration), taskType.end, "interval" + suffix);

    List<Integer> key = Arrays.asList(jobID, taskID);
    allTasks.put(key, taskType);
    machineToIntervals.computeIfAbsent(task.machine, (Integer k) -> new ArrayList<>());
    machineToIntervals.get(task.machine).add(taskType.interval);
  }
}

C#

Dictionary<Tuple<int, int>, Tuple<IntVar, IntVar, IntervalVar>> allTasks =
    new Dictionary<Tuple<int, int>, Tuple<IntVar, IntVar, IntervalVar>>(); // (start, end, duration)
Dictionary<int, List<IntervalVar>> machineToIntervals = new Dictionary<int, List<IntervalVar>>();
for (int jobID = 0; jobID < allJobs.Count(); ++jobID)
{
    var job = allJobs[jobID];
    for (int taskID = 0; taskID < job.Count(); ++taskID)
    {
        var task = job[taskID];
        String suffix = $"_{jobID}_{taskID}";
        IntVar start = model.NewIntVar(0, horizon, "start" + suffix);
        IntVar end = model.NewIntVar(0, horizon, "end" + suffix);
        IntervalVar interval = model.NewIntervalVar(start, task.duration, end, "interval" + suffix);
        var key = Tuple.Create(jobID, taskID);
        allTasks[key] = Tuple.Create(start, end, interval);
        if (!machineToIntervals.ContainsKey(task.machine))
        {
            machineToIntervals.Add(task.machine, new List<IntervalVar>());
        }
        machineToIntervals[task.machine].Add(interval);
    }
}

Pour chaque tâche, le programme utilise la méthode NewIntVar/new_int_var/newIntVar du modèle pour créer les variables:

  • start_var: heure de début de la tâche.
  • end_var: heure de fin de la tâche.

La limite supérieure pour start_var et end_var est horizon, ce qui correspond à la somme des temps de traitement pour toutes les tâches de l'ensemble des tâches. horizon est suffisamment volumineux pour effectuer toutes les tâches pour la raison suivante : si vous planifiez les tâches à des intervalles de temps qui ne se chevauchent pas (solution non optimale), la durée totale de la planification est exactement horizon. Ainsi, la durée de la solution optimale ne peut pas être supérieure à horizon.

Ensuite, le programme utilise la méthode NewIntervalVar/new_interval_var/newIntervalVar pour créer une variable d'intervalle pour la tâche, dont la valeur est un intervalle de temps variable. Les entrées de cette méthode sont les suivantes:

  • Heure de début de la tâche.
  • Durée de l'intervalle de temps de la tâche.
  • Heure de fin de la tâche.
  • Nom de la variable d'intervalle.

Dans n'importe quelle solution, end_var moins start_var doit être égal à duration.

Définir les contraintes

Le code suivant définit les contraintes du problème.

Python

# Create and add disjunctive constraints.
for machine in all_machines:
    model.add_no_overlap(machine_to_intervals[machine])

# Precedences inside a job.
for job_id, job in enumerate(jobs_data):
    for task_id in range(len(job) - 1):
        model.add(
            all_tasks[job_id, task_id + 1].start >= all_tasks[job_id, task_id].end
        )

C++

// Create and add disjunctive constraints.
for (const auto machine : all_machines) {
  cp_model.AddNoOverlap(machine_to_intervals[machine]);
}

// Precedences inside a job.
for (int job_id = 0; job_id < jobs_data.size(); ++job_id) {
  const auto& job = jobs_data[job_id];
  for (int task_id = 0; task_id < job.size() - 1; ++task_id) {
    TaskID key = std::make_tuple(job_id, task_id);
    TaskID next_key = std::make_tuple(job_id, task_id + 1);
    cp_model.AddGreaterOrEqual(all_tasks[next_key].start, all_tasks[key].end);
  }
}

Java

// Create and add disjunctive constraints.
for (int machine : allMachines) {
  List<IntervalVar> list = machineToIntervals.get(machine);
  model.addNoOverlap(list);
}

// Precedences inside a job.
for (int jobID = 0; jobID < allJobs.size(); ++jobID) {
  List<Task> job = allJobs.get(jobID);
  for (int taskID = 0; taskID < job.size() - 1; ++taskID) {
    List<Integer> prevKey = Arrays.asList(jobID, taskID);
    List<Integer> nextKey = Arrays.asList(jobID, taskID + 1);
    model.addGreaterOrEqual(allTasks.get(nextKey).start, allTasks.get(prevKey).end);
  }
}

C#

// Create and add disjunctive constraints.
foreach (int machine in allMachines)
{
    model.AddNoOverlap(machineToIntervals[machine]);
}

// Precedences inside a job.
for (int jobID = 0; jobID < allJobs.Count(); ++jobID)
{
    var job = allJobs[jobID];
    for (int taskID = 0; taskID < job.Count() - 1; ++taskID)
    {
        var key = Tuple.Create(jobID, taskID);
        var nextKey = Tuple.Create(jobID, taskID + 1);
        model.Add(allTasks[nextKey].Item1 >= allTasks[key].Item2);
    }
}

Le programme utilise la méthode AddNoOverlap/add_no_overlap/addNoOverlap du modèle pour créer les contraintes d'absence de chevauchement, qui empêchent les tâches d'une même machine de se chevaucher dans le temps.

Ensuite, le programme ajoute les contraintes de priorité, qui empêchent les tâches consécutives pour la même tâche de se chevaucher dans le temps. Pour chaque tâche et chaque tâche de la tâche, une contrainte linéaire est ajoutée pour spécifier que l'heure de fin d'une tâche doit avoir lieu avant le début de la tâche suivante dans la tâche.

Définir l’objectif

Le code suivant définit l'objectif dans le problème.

Python

# Makespan objective.
obj_var = model.new_int_var(0, horizon, "makespan")
model.add_max_equality(
    obj_var,
    [all_tasks[job_id, len(job) - 1].end for job_id, job in enumerate(jobs_data)],
)
model.minimize(obj_var)

C++

// Makespan objective.
IntVar obj_var = cp_model.NewIntVar({0, horizon}).WithName("makespan");

std::vector<IntVar> ends;
for (int job_id = 0; job_id < jobs_data.size(); ++job_id) {
  const auto& job = jobs_data[job_id];
  TaskID key = std::make_tuple(job_id, job.size() - 1);
  ends.push_back(all_tasks[key].end);
}
cp_model.AddMaxEquality(obj_var, ends);
cp_model.Minimize(obj_var);

Java

// Makespan objective.
IntVar objVar = model.newIntVar(0, horizon, "makespan");
List<IntVar> ends = new ArrayList<>();
for (int jobID = 0; jobID < allJobs.size(); ++jobID) {
  List<Task> job = allJobs.get(jobID);
  List<Integer> key = Arrays.asList(jobID, job.size() - 1);
  ends.add(allTasks.get(key).end);
}
model.addMaxEquality(objVar, ends);
model.minimize(objVar);

C#

// Makespan objective.
IntVar objVar = model.NewIntVar(0, horizon, "makespan");

List<IntVar> ends = new List<IntVar>();
for (int jobID = 0; jobID < allJobs.Count(); ++jobID)
{
    var job = allJobs[jobID];
    var key = Tuple.Create(jobID, job.Count() - 1);
    ends.Add(allTasks[key].Item2);
}
model.AddMaxEquality(objVar, ends);
model.Minimize(objVar);

Ce code crée une variable d'objectif et la limite à la valeur maximale de la fin de toutes les tâches.

Appeler le résolveur

Le code suivant appelle le résolveur.

Python

solver = cp_model.CpSolver()
status = solver.solve(model)

C++

const CpSolverResponse response = Solve(cp_model.Build());

Java

CpSolver solver = new CpSolver();
CpSolverStatus status = solver.solve(model);

C#

CpSolver solver = new CpSolver();
CpSolverStatus status = solver.Solve(model);
Console.WriteLine($"Solve status: {status}");

Afficher les résultats

Le code suivant affiche les résultats, y compris la planification et les intervalles de tâches optimaux.

Python

if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE:
    print("Solution:")
    # Create one list of assigned tasks per machine.
    assigned_jobs = collections.defaultdict(list)
    for job_id, job in enumerate(jobs_data):
        for task_id, task in enumerate(job):
            machine = task[0]
            assigned_jobs[machine].append(
                assigned_task_type(
                    start=solver.value(all_tasks[job_id, task_id].start),
                    job=job_id,
                    index=task_id,
                    duration=task[1],
                )
            )

    # Create per machine output lines.
    output = ""
    for machine in all_machines:
        # Sort by starting time.
        assigned_jobs[machine].sort()
        sol_line_tasks = "Machine " + str(machine) + ": "
        sol_line = "           "

        for assigned_task in assigned_jobs[machine]:
            name = f"job_{assigned_task.job}_task_{assigned_task.index}"
            # add spaces to output to align columns.
            sol_line_tasks += f"{name:15}"

            start = assigned_task.start
            duration = assigned_task.duration
            sol_tmp = f"[{start},{start + duration}]"
            # add spaces to output to align columns.
            sol_line += f"{sol_tmp:15}"

        sol_line += "\n"
        sol_line_tasks += "\n"
        output += sol_line_tasks
        output += sol_line

    # Finally print the solution found.
    print(f"Optimal Schedule Length: {solver.objective_value}")
    print(output)
else:
    print("No solution found.")

C++

if (response.status() == CpSolverStatus::OPTIMAL ||
    response.status() == CpSolverStatus::FEASIBLE) {
  LOG(INFO) << "Solution:";
  // create one list of assigned tasks per machine.
  struct AssignedTaskType {
    int job_id;
    int task_id;
    int64_t start;
    int64_t duration;

    bool operator<(const AssignedTaskType& rhs) const {
      return std::tie(this->start, this->duration) <
             std::tie(rhs.start, rhs.duration);
    }
  };

  std::map<int64_t, std::vector<AssignedTaskType>> assigned_jobs;
  for (int job_id = 0; job_id < jobs_data.size(); ++job_id) {
    const auto& job = jobs_data[job_id];
    for (int task_id = 0; task_id < job.size(); ++task_id) {
      const auto [machine, duration] = job[task_id];
      TaskID key = std::make_tuple(job_id, task_id);
      int64_t start = SolutionIntegerValue(response, all_tasks[key].start);
      assigned_jobs[machine].push_back(
          AssignedTaskType{/*.job_id=*/job_id,
                           /*.task_id=*/task_id,
                           /*.start=*/start,
                           /*.duration=*/duration});
    }
  }

  // Create per machine output lines.
  std::string output = "";
  for (const auto machine : all_machines) {
    // Sort by starting time.
    std::sort(assigned_jobs[machine].begin(), assigned_jobs[machine].end());
    std::string sol_line_tasks = "Machine " + std::to_string(machine) + ": ";
    std::string sol_line = "           ";

    for (const auto& assigned_task : assigned_jobs[machine]) {
      std::string name = absl::StrFormat(
          "job_%d_task_%d", assigned_task.job_id, assigned_task.task_id);
      // Add spaces to output to align columns.
      sol_line_tasks += absl::StrFormat("%-15s", name);

      int64_t start = assigned_task.start;
      int64_t duration = assigned_task.duration;
      std::string sol_tmp =
          absl::StrFormat("[%i,%i]", start, start + duration);
      // Add spaces to output to align columns.
      sol_line += absl::StrFormat("%-15s", sol_tmp);
    }
    output += sol_line_tasks + "\n";
    output += sol_line + "\n";
  }
  // Finally print the solution found.
  LOG(INFO) << "Optimal Schedule Length: " << response.objective_value();
  LOG(INFO) << "\n" << output;
} else {
  LOG(INFO) << "No solution found.";
}

Java

if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) {
  class AssignedTask {
    int jobID;
    int taskID;
    int start;
    int duration;
    // Ctor
    AssignedTask(int jobID, int taskID, int start, int duration) {
      this.jobID = jobID;
      this.taskID = taskID;
      this.start = start;
      this.duration = duration;
    }
  }
  class SortTasks implements Comparator<AssignedTask> {
    @Override
    public int compare(AssignedTask a, AssignedTask b) {
      if (a.start != b.start) {
        return a.start - b.start;
      } else {
        return a.duration - b.duration;
      }
    }
  }
  System.out.println("Solution:");
  // Create one list of assigned tasks per machine.
  Map<Integer, List<AssignedTask>> assignedJobs = new HashMap<>();
  for (int jobID = 0; jobID < allJobs.size(); ++jobID) {
    List<Task> job = allJobs.get(jobID);
    for (int taskID = 0; taskID < job.size(); ++taskID) {
      Task task = job.get(taskID);
      List<Integer> key = Arrays.asList(jobID, taskID);
      AssignedTask assignedTask = new AssignedTask(
          jobID, taskID, (int) solver.value(allTasks.get(key).start), task.duration);
      assignedJobs.computeIfAbsent(task.machine, (Integer k) -> new ArrayList<>());
      assignedJobs.get(task.machine).add(assignedTask);
    }
  }

  // Create per machine output lines.
  String output = "";
  for (int machine : allMachines) {
    // Sort by starting time.
    Collections.sort(assignedJobs.get(machine), new SortTasks());
    String solLineTasks = "Machine " + machine + ": ";
    String solLine = "           ";

    for (AssignedTask assignedTask : assignedJobs.get(machine)) {
      String name = "job_" + assignedTask.jobID + "_task_" + assignedTask.taskID;
      // Add spaces to output to align columns.
      solLineTasks += String.format("%-15s", name);

      String solTmp =
          "[" + assignedTask.start + "," + (assignedTask.start + assignedTask.duration) + "]";
      // Add spaces to output to align columns.
      solLine += String.format("%-15s", solTmp);
    }
    output += solLineTasks + "%n";
    output += solLine + "%n";
  }
  System.out.printf("Optimal Schedule Length: %f%n", solver.objectiveValue());
  System.out.printf(output);
} else {
  System.out.println("No solution found.");
}

C#

if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible)
{
    Console.WriteLine("Solution:");

    Dictionary<int, List<AssignedTask>> assignedJobs = new Dictionary<int, List<AssignedTask>>();
    for (int jobID = 0; jobID < allJobs.Count(); ++jobID)
    {
        var job = allJobs[jobID];
        for (int taskID = 0; taskID < job.Count(); ++taskID)
        {
            var task = job[taskID];
            var key = Tuple.Create(jobID, taskID);
            int start = (int)solver.Value(allTasks[key].Item1);
            if (!assignedJobs.ContainsKey(task.machine))
            {
                assignedJobs.Add(task.machine, new List<AssignedTask>());
            }
            assignedJobs[task.machine].Add(new AssignedTask(jobID, taskID, start, task.duration));
        }
    }

    // Create per machine output lines.
    String output = "";
    foreach (int machine in allMachines)
    {
        // Sort by starting time.
        assignedJobs[machine].Sort();
        String solLineTasks = $"Machine {machine}: ";
        String solLine = "           ";

        foreach (var assignedTask in assignedJobs[machine])
        {
            String name = $"job_{assignedTask.jobID}_task_{assignedTask.taskID}";
            // Add spaces to output to align columns.
            solLineTasks += $"{name,-15}";

            String solTmp = $"[{assignedTask.start},{assignedTask.start+assignedTask.duration}]";
            // Add spaces to output to align columns.
            solLine += $"{solTmp,-15}";
        }
        output += solLineTasks + "\n";
        output += solLine + "\n";
    }
    // Finally print the solution found.
    Console.WriteLine($"Optimal Schedule Length: {solver.ObjectiveValue}");
    Console.WriteLine($"\n{output}");
}
else
{
    Console.WriteLine("No solution found.");
}

Le calendrier optimal est indiqué ci-dessous:

 Optimal Schedule Length: 11
Machine 0: job_0_0   job_1_0
           [0,3]     [3,5]
Machine 1: job_2_0   job_0_1   job_1_2
           [0,4]     [4,6]     [7,11]
Machine 2: job_1_1   job_0_2   job_2_1
           [5,6]     [6,8]     [8,11]

Les lecteurs aux yeux d'aigle qui examinent la machine 1 peuvent se demander pourquoi la tâche "job_1_2" a été planifiée à l'heure 7 au lieu de l'heure 6. Les deux solutions sont valides, mais gardez à l'esprit que l'objectif est de réduire au maximum le makespan. Déplacer la tâche 1_2 plus tôt ne réduira pas le délai de création. Les deux solutions sont donc égales du point de vue du résolveur.

Programme complet

Enfin, voici le programme complet pour le problème de l'atelier d'emploi.

Python

"""Minimal jobshop example."""
import collections
from ortools.sat.python import cp_model


def main() -> None:
    """Minimal jobshop problem."""
    # Data.
    jobs_data = [  # task = (machine_id, processing_time).
        [(0, 3), (1, 2), (2, 2)],  # Job0
        [(0, 2), (2, 1), (1, 4)],  # Job1
        [(1, 4), (2, 3)],  # Job2
    ]

    machines_count = 1 + max(task[0] for job in jobs_data for task in job)
    all_machines = range(machines_count)
    # Computes horizon dynamically as the sum of all durations.
    horizon = sum(task[1] for job in jobs_data for task in job)

    # Create the model.
    model = cp_model.CpModel()

    # Named tuple to store information about created variables.
    task_type = collections.namedtuple("task_type", "start end interval")
    # Named tuple to manipulate solution information.
    assigned_task_type = collections.namedtuple(
        "assigned_task_type", "start job index duration"
    )

    # Creates job intervals and add to the corresponding machine lists.
    all_tasks = {}
    machine_to_intervals = collections.defaultdict(list)

    for job_id, job in enumerate(jobs_data):
        for task_id, task in enumerate(job):
            machine, duration = task
            suffix = f"_{job_id}_{task_id}"
            start_var = model.new_int_var(0, horizon, "start" + suffix)
            end_var = model.new_int_var(0, horizon, "end" + suffix)
            interval_var = model.new_interval_var(
                start_var, duration, end_var, "interval" + suffix
            )
            all_tasks[job_id, task_id] = task_type(
                start=start_var, end=end_var, interval=interval_var
            )
            machine_to_intervals[machine].append(interval_var)

    # Create and add disjunctive constraints.
    for machine in all_machines:
        model.add_no_overlap(machine_to_intervals[machine])

    # Precedences inside a job.
    for job_id, job in enumerate(jobs_data):
        for task_id in range(len(job) - 1):
            model.add(
                all_tasks[job_id, task_id + 1].start >= all_tasks[job_id, task_id].end
            )

    # Makespan objective.
    obj_var = model.new_int_var(0, horizon, "makespan")
    model.add_max_equality(
        obj_var,
        [all_tasks[job_id, len(job) - 1].end for job_id, job in enumerate(jobs_data)],
    )
    model.minimize(obj_var)

    # Creates the solver and solve.
    solver = cp_model.CpSolver()
    status = solver.solve(model)

    if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE:
        print("Solution:")
        # Create one list of assigned tasks per machine.
        assigned_jobs = collections.defaultdict(list)
        for job_id, job in enumerate(jobs_data):
            for task_id, task in enumerate(job):
                machine = task[0]
                assigned_jobs[machine].append(
                    assigned_task_type(
                        start=solver.value(all_tasks[job_id, task_id].start),
                        job=job_id,
                        index=task_id,
                        duration=task[1],
                    )
                )

        # Create per machine output lines.
        output = ""
        for machine in all_machines:
            # Sort by starting time.
            assigned_jobs[machine].sort()
            sol_line_tasks = "Machine " + str(machine) + ": "
            sol_line = "           "

            for assigned_task in assigned_jobs[machine]:
                name = f"job_{assigned_task.job}_task_{assigned_task.index}"
                # add spaces to output to align columns.
                sol_line_tasks += f"{name:15}"

                start = assigned_task.start
                duration = assigned_task.duration
                sol_tmp = f"[{start},{start + duration}]"
                # add spaces to output to align columns.
                sol_line += f"{sol_tmp:15}"

            sol_line += "\n"
            sol_line_tasks += "\n"
            output += sol_line_tasks
            output += sol_line

        # Finally print the solution found.
        print(f"Optimal Schedule Length: {solver.objective_value}")
        print(output)
    else:
        print("No solution found.")

    # Statistics.
    print("\nStatistics")
    print(f"  - conflicts: {solver.num_conflicts}")
    print(f"  - branches : {solver.num_branches}")
    print(f"  - wall time: {solver.wall_time}s")


if __name__ == "__main__":
    main()

C++

// Nurse scheduling problem with shift requests.
#include <stdlib.h>

#include <algorithm>
#include <cstdint>
#include <map>
#include <numeric>
#include <string>
#include <tuple>
#include <vector>

#include "absl/strings/str_format.h"
#include "ortools/base/logging.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"

namespace operations_research {
namespace sat {

void MinimalJobshopSat() {
  using Task = std::tuple<int64_t, int64_t>;  // (machine_id, processing_time)
  using Job = std::vector<Task>;
  std::vector<Job> jobs_data = {
      {{0, 3}, {1, 2}, {2, 2}},  // Job_0: Task_0 Task_1 Task_2
      {{0, 2}, {2, 1}, {1, 4}},  // Job_1: Task_0 Task_1 Task_2
      {{1, 4}, {2, 3}},          // Job_2: Task_0 Task_1
  };

  int64_t num_machines = 0;
  for (const auto& job : jobs_data) {
    for (const auto& [machine, _] : job) {
      num_machines = std::max(num_machines, 1 + machine);
    }
  }

  std::vector<int> all_machines(num_machines);
  std::iota(all_machines.begin(), all_machines.end(), 0);

  // Computes horizon dynamically as the sum of all durations.
  int64_t horizon = 0;
  for (const auto& job : jobs_data) {
    for (const auto& [_, time] : job) {
      horizon += time;
    }
  }

  // Creates the model.
  CpModelBuilder cp_model;

  struct TaskType {
    IntVar start;
    IntVar end;
    IntervalVar interval;
  };

  using TaskID = std::tuple<int, int>;  // (job_id, task_id)
  std::map<TaskID, TaskType> all_tasks;
  std::map<int64_t, std::vector<IntervalVar>> machine_to_intervals;
  for (int job_id = 0; job_id < jobs_data.size(); ++job_id) {
    const auto& job = jobs_data[job_id];
    for (int task_id = 0; task_id < job.size(); ++task_id) {
      const auto [machine, duration] = job[task_id];
      std::string suffix = absl::StrFormat("_%d_%d", job_id, task_id);
      IntVar start = cp_model.NewIntVar({0, horizon})
                         .WithName(std::string("start") + suffix);
      IntVar end = cp_model.NewIntVar({0, horizon})
                       .WithName(std::string("end") + suffix);
      IntervalVar interval = cp_model.NewIntervalVar(start, duration, end)
                                 .WithName(std::string("interval") + suffix);

      TaskID key = std::make_tuple(job_id, task_id);
      all_tasks.emplace(key, TaskType{/*.start=*/start,
                                      /*.end=*/end,
                                      /*.interval=*/interval});
      machine_to_intervals[machine].push_back(interval);
    }
  }

  // Create and add disjunctive constraints.
  for (const auto machine : all_machines) {
    cp_model.AddNoOverlap(machine_to_intervals[machine]);
  }

  // Precedences inside a job.
  for (int job_id = 0; job_id < jobs_data.size(); ++job_id) {
    const auto& job = jobs_data[job_id];
    for (int task_id = 0; task_id < job.size() - 1; ++task_id) {
      TaskID key = std::make_tuple(job_id, task_id);
      TaskID next_key = std::make_tuple(job_id, task_id + 1);
      cp_model.AddGreaterOrEqual(all_tasks[next_key].start, all_tasks[key].end);
    }
  }

  // Makespan objective.
  IntVar obj_var = cp_model.NewIntVar({0, horizon}).WithName("makespan");

  std::vector<IntVar> ends;
  for (int job_id = 0; job_id < jobs_data.size(); ++job_id) {
    const auto& job = jobs_data[job_id];
    TaskID key = std::make_tuple(job_id, job.size() - 1);
    ends.push_back(all_tasks[key].end);
  }
  cp_model.AddMaxEquality(obj_var, ends);
  cp_model.Minimize(obj_var);

  const CpSolverResponse response = Solve(cp_model.Build());

  if (response.status() == CpSolverStatus::OPTIMAL ||
      response.status() == CpSolverStatus::FEASIBLE) {
    LOG(INFO) << "Solution:";
    // create one list of assigned tasks per machine.
    struct AssignedTaskType {
      int job_id;
      int task_id;
      int64_t start;
      int64_t duration;

      bool operator<(const AssignedTaskType& rhs) const {
        return std::tie(this->start, this->duration) <
               std::tie(rhs.start, rhs.duration);
      }
    };

    std::map<int64_t, std::vector<AssignedTaskType>> assigned_jobs;
    for (int job_id = 0; job_id < jobs_data.size(); ++job_id) {
      const auto& job = jobs_data[job_id];
      for (int task_id = 0; task_id < job.size(); ++task_id) {
        const auto [machine, duration] = job[task_id];
        TaskID key = std::make_tuple(job_id, task_id);
        int64_t start = SolutionIntegerValue(response, all_tasks[key].start);
        assigned_jobs[machine].push_back(
            AssignedTaskType{/*.job_id=*/job_id,
                             /*.task_id=*/task_id,
                             /*.start=*/start,
                             /*.duration=*/duration});
      }
    }

    // Create per machine output lines.
    std::string output = "";
    for (const auto machine : all_machines) {
      // Sort by starting time.
      std::sort(assigned_jobs[machine].begin(), assigned_jobs[machine].end());
      std::string sol_line_tasks = "Machine " + std::to_string(machine) + ": ";
      std::string sol_line = "           ";

      for (const auto& assigned_task : assigned_jobs[machine]) {
        std::string name = absl::StrFormat(
            "job_%d_task_%d", assigned_task.job_id, assigned_task.task_id);
        // Add spaces to output to align columns.
        sol_line_tasks += absl::StrFormat("%-15s", name);

        int64_t start = assigned_task.start;
        int64_t duration = assigned_task.duration;
        std::string sol_tmp =
            absl::StrFormat("[%i,%i]", start, start + duration);
        // Add spaces to output to align columns.
        sol_line += absl::StrFormat("%-15s", sol_tmp);
      }
      output += sol_line_tasks + "\n";
      output += sol_line + "\n";
    }
    // Finally print the solution found.
    LOG(INFO) << "Optimal Schedule Length: " << response.objective_value();
    LOG(INFO) << "\n" << output;
  } else {
    LOG(INFO) << "No solution found.";
  }

  // Statistics.
  LOG(INFO) << "Statistics";
  LOG(INFO) << CpSolverResponseStats(response);
}

}  // namespace sat
}  // namespace operations_research

int main() {
  operations_research::sat::MinimalJobshopSat();
  return EXIT_SUCCESS;
}

Java

package com.google.ortools.sat.samples;
import static java.lang.Math.max;

import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverStatus;
import com.google.ortools.sat.IntVar;
import com.google.ortools.sat.IntervalVar;
import com.google.ortools.sat.LinearExpr;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.stream.IntStream;

/** Minimal Jobshop problem. */
public class MinimalJobshopSat {
  public static void main(String[] args) {
    Loader.loadNativeLibraries();
    class Task {
      int machine;
      int duration;
      Task(int machine, int duration) {
        this.machine = machine;
        this.duration = duration;
      }
    }

    final List<List<Task>> allJobs =
        Arrays.asList(Arrays.asList(new Task(0, 3), new Task(1, 2), new Task(2, 2)), // Job0
            Arrays.asList(new Task(0, 2), new Task(2, 1), new Task(1, 4)), // Job1
            Arrays.asList(new Task(1, 4), new Task(2, 3)) // Job2
        );

    int numMachines = 1;
    for (List<Task> job : allJobs) {
      for (Task task : job) {
        numMachines = max(numMachines, 1 + task.machine);
      }
    }
    final int[] allMachines = IntStream.range(0, numMachines).toArray();

    // Computes horizon dynamically as the sum of all durations.
    int horizon = 0;
    for (List<Task> job : allJobs) {
      for (Task task : job) {
        horizon += task.duration;
      }
    }

    // Creates the model.
    CpModel model = new CpModel();

    class TaskType {
      IntVar start;
      IntVar end;
      IntervalVar interval;
    }
    Map<List<Integer>, TaskType> allTasks = new HashMap<>();
    Map<Integer, List<IntervalVar>> machineToIntervals = new HashMap<>();

    for (int jobID = 0; jobID < allJobs.size(); ++jobID) {
      List<Task> job = allJobs.get(jobID);
      for (int taskID = 0; taskID < job.size(); ++taskID) {
        Task task = job.get(taskID);
        String suffix = "_" + jobID + "_" + taskID;

        TaskType taskType = new TaskType();
        taskType.start = model.newIntVar(0, horizon, "start" + suffix);
        taskType.end = model.newIntVar(0, horizon, "end" + suffix);
        taskType.interval = model.newIntervalVar(
            taskType.start, LinearExpr.constant(task.duration), taskType.end, "interval" + suffix);

        List<Integer> key = Arrays.asList(jobID, taskID);
        allTasks.put(key, taskType);
        machineToIntervals.computeIfAbsent(task.machine, (Integer k) -> new ArrayList<>());
        machineToIntervals.get(task.machine).add(taskType.interval);
      }
    }

    // Create and add disjunctive constraints.
    for (int machine : allMachines) {
      List<IntervalVar> list = machineToIntervals.get(machine);
      model.addNoOverlap(list);
    }

    // Precedences inside a job.
    for (int jobID = 0; jobID < allJobs.size(); ++jobID) {
      List<Task> job = allJobs.get(jobID);
      for (int taskID = 0; taskID < job.size() - 1; ++taskID) {
        List<Integer> prevKey = Arrays.asList(jobID, taskID);
        List<Integer> nextKey = Arrays.asList(jobID, taskID + 1);
        model.addGreaterOrEqual(allTasks.get(nextKey).start, allTasks.get(prevKey).end);
      }
    }

    // Makespan objective.
    IntVar objVar = model.newIntVar(0, horizon, "makespan");
    List<IntVar> ends = new ArrayList<>();
    for (int jobID = 0; jobID < allJobs.size(); ++jobID) {
      List<Task> job = allJobs.get(jobID);
      List<Integer> key = Arrays.asList(jobID, job.size() - 1);
      ends.add(allTasks.get(key).end);
    }
    model.addMaxEquality(objVar, ends);
    model.minimize(objVar);

    // Creates a solver and solves the model.
    CpSolver solver = new CpSolver();
    CpSolverStatus status = solver.solve(model);

    if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) {
      class AssignedTask {
        int jobID;
        int taskID;
        int start;
        int duration;
        // Ctor
        AssignedTask(int jobID, int taskID, int start, int duration) {
          this.jobID = jobID;
          this.taskID = taskID;
          this.start = start;
          this.duration = duration;
        }
      }
      class SortTasks implements Comparator<AssignedTask> {
        @Override
        public int compare(AssignedTask a, AssignedTask b) {
          if (a.start != b.start) {
            return a.start - b.start;
          } else {
            return a.duration - b.duration;
          }
        }
      }
      System.out.println("Solution:");
      // Create one list of assigned tasks per machine.
      Map<Integer, List<AssignedTask>> assignedJobs = new HashMap<>();
      for (int jobID = 0; jobID < allJobs.size(); ++jobID) {
        List<Task> job = allJobs.get(jobID);
        for (int taskID = 0; taskID < job.size(); ++taskID) {
          Task task = job.get(taskID);
          List<Integer> key = Arrays.asList(jobID, taskID);
          AssignedTask assignedTask = new AssignedTask(
              jobID, taskID, (int) solver.value(allTasks.get(key).start), task.duration);
          assignedJobs.computeIfAbsent(task.machine, (Integer k) -> new ArrayList<>());
          assignedJobs.get(task.machine).add(assignedTask);
        }
      }

      // Create per machine output lines.
      String output = "";
      for (int machine : allMachines) {
        // Sort by starting time.
        Collections.sort(assignedJobs.get(machine), new SortTasks());
        String solLineTasks = "Machine " + machine + ": ";
        String solLine = "           ";

        for (AssignedTask assignedTask : assignedJobs.get(machine)) {
          String name = "job_" + assignedTask.jobID + "_task_" + assignedTask.taskID;
          // Add spaces to output to align columns.
          solLineTasks += String.format("%-15s", name);

          String solTmp =
              "[" + assignedTask.start + "," + (assignedTask.start + assignedTask.duration) + "]";
          // Add spaces to output to align columns.
          solLine += String.format("%-15s", solTmp);
        }
        output += solLineTasks + "%n";
        output += solLine + "%n";
      }
      System.out.printf("Optimal Schedule Length: %f%n", solver.objectiveValue());
      System.out.printf(output);
    } else {
      System.out.println("No solution found.");
    }

    // Statistics.
    System.out.println("Statistics");
    System.out.printf("  conflicts: %d%n", solver.numConflicts());
    System.out.printf("  branches : %d%n", solver.numBranches());
    System.out.printf("  wall time: %f s%n", solver.wallTime());
  }

  private MinimalJobshopSat() {}
}

C#

using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
using Google.OrTools.Sat;

public class ScheduleRequestsSat
{
    private class AssignedTask : IComparable
    {
        public int jobID;
        public int taskID;
        public int start;
        public int duration;

        public AssignedTask(int jobID, int taskID, int start, int duration)
        {
            this.jobID = jobID;
            this.taskID = taskID;
            this.start = start;
            this.duration = duration;
        }

        public int CompareTo(object obj)
        {
            if (obj == null)
                return 1;

            AssignedTask otherTask = obj as AssignedTask;
            if (otherTask != null)
            {
                if (this.start != otherTask.start)
                    return this.start.CompareTo(otherTask.start);
                else
                    return this.duration.CompareTo(otherTask.duration);
            }
            else
                throw new ArgumentException("Object is not a Temperature");
        }
    }

    public static void Main(String[] args)
    {
        var allJobs =
            new[] {
                new[] {
                    // job0
                    new { machine = 0, duration = 3 }, // task0
                    new { machine = 1, duration = 2 }, // task1
                    new { machine = 2, duration = 2 }, // task2
                }
                    .ToList(),
                new[] {
                    // job1
                    new { machine = 0, duration = 2 }, // task0
                    new { machine = 2, duration = 1 }, // task1
                    new { machine = 1, duration = 4 }, // task2
                }
                    .ToList(),
                new[] {
                    // job2
                    new { machine = 1, duration = 4 }, // task0
                    new { machine = 2, duration = 3 }, // task1
                }
                    .ToList(),
            }
                .ToList();

        int numMachines = 0;
        foreach (var job in allJobs)
        {
            foreach (var task in job)
            {
                numMachines = Math.Max(numMachines, 1 + task.machine);
            }
        }
        int[] allMachines = Enumerable.Range(0, numMachines).ToArray();

        // Computes horizon dynamically as the sum of all durations.
        int horizon = 0;
        foreach (var job in allJobs)
        {
            foreach (var task in job)
            {
                horizon += task.duration;
            }
        }

        // Creates the model.
        CpModel model = new CpModel();

        Dictionary<Tuple<int, int>, Tuple<IntVar, IntVar, IntervalVar>> allTasks =
            new Dictionary<Tuple<int, int>, Tuple<IntVar, IntVar, IntervalVar>>(); // (start, end, duration)
        Dictionary<int, List<IntervalVar>> machineToIntervals = new Dictionary<int, List<IntervalVar>>();
        for (int jobID = 0; jobID < allJobs.Count(); ++jobID)
        {
            var job = allJobs[jobID];
            for (int taskID = 0; taskID < job.Count(); ++taskID)
            {
                var task = job[taskID];
                String suffix = $"_{jobID}_{taskID}";
                IntVar start = model.NewIntVar(0, horizon, "start" + suffix);
                IntVar end = model.NewIntVar(0, horizon, "end" + suffix);
                IntervalVar interval = model.NewIntervalVar(start, task.duration, end, "interval" + suffix);
                var key = Tuple.Create(jobID, taskID);
                allTasks[key] = Tuple.Create(start, end, interval);
                if (!machineToIntervals.ContainsKey(task.machine))
                {
                    machineToIntervals.Add(task.machine, new List<IntervalVar>());
                }
                machineToIntervals[task.machine].Add(interval);
            }
        }

        // Create and add disjunctive constraints.
        foreach (int machine in allMachines)
        {
            model.AddNoOverlap(machineToIntervals[machine]);
        }

        // Precedences inside a job.
        for (int jobID = 0; jobID < allJobs.Count(); ++jobID)
        {
            var job = allJobs[jobID];
            for (int taskID = 0; taskID < job.Count() - 1; ++taskID)
            {
                var key = Tuple.Create(jobID, taskID);
                var nextKey = Tuple.Create(jobID, taskID + 1);
                model.Add(allTasks[nextKey].Item1 >= allTasks[key].Item2);
            }
        }

        // Makespan objective.
        IntVar objVar = model.NewIntVar(0, horizon, "makespan");

        List<IntVar> ends = new List<IntVar>();
        for (int jobID = 0; jobID < allJobs.Count(); ++jobID)
        {
            var job = allJobs[jobID];
            var key = Tuple.Create(jobID, job.Count() - 1);
            ends.Add(allTasks[key].Item2);
        }
        model.AddMaxEquality(objVar, ends);
        model.Minimize(objVar);

        // Solve
        CpSolver solver = new CpSolver();
        CpSolverStatus status = solver.Solve(model);
        Console.WriteLine($"Solve status: {status}");

        if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible)
        {
            Console.WriteLine("Solution:");

            Dictionary<int, List<AssignedTask>> assignedJobs = new Dictionary<int, List<AssignedTask>>();
            for (int jobID = 0; jobID < allJobs.Count(); ++jobID)
            {
                var job = allJobs[jobID];
                for (int taskID = 0; taskID < job.Count(); ++taskID)
                {
                    var task = job[taskID];
                    var key = Tuple.Create(jobID, taskID);
                    int start = (int)solver.Value(allTasks[key].Item1);
                    if (!assignedJobs.ContainsKey(task.machine))
                    {
                        assignedJobs.Add(task.machine, new List<AssignedTask>());
                    }
                    assignedJobs[task.machine].Add(new AssignedTask(jobID, taskID, start, task.duration));
                }
            }

            // Create per machine output lines.
            String output = "";
            foreach (int machine in allMachines)
            {
                // Sort by starting time.
                assignedJobs[machine].Sort();
                String solLineTasks = $"Machine {machine}: ";
                String solLine = "           ";

                foreach (var assignedTask in assignedJobs[machine])
                {
                    String name = $"job_{assignedTask.jobID}_task_{assignedTask.taskID}";
                    // Add spaces to output to align columns.
                    solLineTasks += $"{name,-15}";

                    String solTmp = $"[{assignedTask.start},{assignedTask.start+assignedTask.duration}]";
                    // Add spaces to output to align columns.
                    solLine += $"{solTmp,-15}";
                }
                output += solLineTasks + "\n";
                output += solLine + "\n";
            }
            // Finally print the solution found.
            Console.WriteLine($"Optimal Schedule Length: {solver.ObjectiveValue}");
            Console.WriteLine($"\n{output}");
        }
        else
        {
            Console.WriteLine("No solution found.");
        }

        Console.WriteLine("Statistics");
        Console.WriteLine($"  conflicts: {solver.NumConflicts()}");
        Console.WriteLine($"  branches : {solver.NumBranches()}");
        Console.WriteLine($"  wall time: {solver.WallTime()}s");
    }
}