有電容的車輛路線問題 (CVRP) 是指車輛在特定環境中採用 不同地點的自取或運送物品有限, 項目有數量 (例如重量或體積),且車輛 可容納的最大容量。問題是取貨或送達 以最低價格購買物品,且絕對不會超過車輛的容量。
在以下範例中,我們假設所有商品皆已領取。 如果所有商品都已送達,該程式也能正常運作: 在這個例子中,您可以考量在 車輛會寄回庫房但容量限制 在這兩種情況下,操作方式都相同。
CVRP 範例
接下來,我們要說明具有容量限制的 VRP 範例。範例 延伸前一個 VRP 範例,並將 。每個位置都會有對應的需求: 要取貨的商品數量。此外,每輛車的最高價 容量為 15(我們不會針對需求或容量指定單位)。
下方的網格會以藍色顯示要造訪的地點,而商家所在地位於 黑色。相關需求會顯示在各地區的右下角。詳情請見 VRP 中的位置座標 一節。
問題在於找出將路線分配到最短的車輛 也就是車輛從未行駛的總距離 超出容量上限。
使用 OR-Tools 解決 CVRP 範例
以下各節說明如何使用 OR-Tools 解決 CVRP 範例。
建立資料
這個範例中的資料包含先前 VRP 範例,並加入下列示例 需求和車輛容量:
Python
data["demands"] = [0, 1, 1, 2, 4, 2, 4, 8, 8, 1, 2, 1, 2, 4, 4, 8, 8] data["vehicle_capacities"] = [15, 15, 15, 15]
C++
const std::vector<int64_t> demands{
0, 1, 1, 2, 4, 2, 4, 8, 8, 1, 2, 1, 2, 4, 4, 8, 8,
};
const std::vector<int64_t> vehicle_capacities{15, 15, 15, 15};
Java
public final long[] demands = {0, 1, 1, 2, 4, 2, 4, 8, 8, 1, 2, 1, 2, 4, 4, 8, 8};
public final long[] vehicleCapacities = {15, 15, 15, 15};
C#
public long[] Demands = { 0, 1, 1, 2, 4, 2, 4, 8, 8, 1, 2, 1, 2, 4, 4, 8, 8 };
public long[] VehicleCapacities = { 15, 15, 15, 15 };
資料中的新項目如下:
- 要求:每個位置都有對應的數量需求: 例如物品的重量或數量。
- 容量:每輛車都有「容量」,也就是 車輛就能抓到每當車輛沿著路線行駛, 所含項目永遠不會超過容量上限
新增距離回呼
距離回呼—函式會傳回任意路線 有兩個位置,定義方式與 VRP 範例。
新增需求回呼和容量限制
除了距離回呼外,解題工具也需要需求回呼 ,傳回各地點的需求以及容量維度 限制。下列程式碼會建立這些範例。
Python
def demand_callback(from_index):
"""Returns the demand of the node."""
# Convert from routing variable Index to demands NodeIndex.
from_node = manager.IndexToNode(from_index)
return data["demands"][from_node]
demand_callback_index = routing.RegisterUnaryTransitCallback(demand_callback)
routing.AddDimensionWithVehicleCapacity(
demand_callback_index,
0, # null capacity slack
data["vehicle_capacities"], # vehicle maximum capacities
True, # start cumul to zero
"Capacity",
)
C++
const int demand_callback_index = routing.RegisterUnaryTransitCallback(
[&data, &manager](const int64_t from_index) -> int64_t {
// Convert from routing variable Index to demand NodeIndex.
const int from_node = manager.IndexToNode(from_index).value();
return data.demands[from_node];
});
routing.AddDimensionWithVehicleCapacity(
demand_callback_index, // transit callback index
int64_t{0}, // null capacity slack
data.vehicle_capacities, // vehicle maximum capacities
true, // start cumul to zero
"Capacity");
Java
final int demandCallbackIndex = routing.registerUnaryTransitCallback((long fromIndex) -> {
// Convert from routing variable Index to user NodeIndex.
int fromNode = manager.indexToNode(fromIndex);
return data.demands[fromNode];
});
routing.addDimensionWithVehicleCapacity(demandCallbackIndex, 0, // null capacity slack
data.vehicleCapacities, // vehicle maximum capacities
true, // start cumul to zero
"Capacity");
C#
int demandCallbackIndex = routing.RegisterUnaryTransitCallback((long fromIndex) =>
{
// Convert from routing variable Index to
// demand NodeIndex.
var fromNode =
manager.IndexToNode(fromIndex);
return data.Demands[fromNode];
});
routing.AddDimensionWithVehicleCapacity(demandCallbackIndex, 0, // null capacity slack
data.VehicleCapacities, // vehicle maximum capacities
true, // start cumul to zero
"Capacity");
距離回呼 (需將一對位置做為輸入內容) 不同,
需求回呼僅取決於傳送位置 (from_node)。
因為容量限制牽涉到車輛的負載重量 運輸 — 沿著路線累積的數量,我們需 建立類似廣告活動的維度 與上一個輸入內容的距離維度 VRP 範例。
在這個範例中,我們會使用
AddDimensionWithVehicleCapacity敬上
方法,採用容量向量。
由於這個範例中的所有車容量都相同,因此您可以使用
AddDimension敬上
方法,針對所有車輛數量使用單一上下限。但
AddDimensionWithVehicleCapacity 會處理較一般性的情況
每個車輛的車速各不相同
多種貨物類型和容量的問題
在更複雜的 CVRP 中,每輛車可能會攜帶多種不同的貨物 ,每種類型的容量上限。 舉例來說,燃油貨卡車可能會攜帶多種燃料, 多個容量不同的坦克如要處理這類問題 為每個貨物類型建立不同的容量回呼和尺寸 (製作 請務必為它們指派不重複的名稱)。
新增解決方案印表機
解決方案印表機會顯示每輛車的路線和其路線 累積 load:車輛停靠站目前的總量 路徑。
Python
def print_solution(data, manager, routing, solution):
"""Prints solution on console."""
print(f"Objective: {solution.ObjectiveValue()}")
total_distance = 0
total_load = 0
for vehicle_id in range(data["num_vehicles"]):
index = routing.Start(vehicle_id)
plan_output = f"Route for vehicle {vehicle_id}:\n"
route_distance = 0
route_load = 0
while not routing.IsEnd(index):
node_index = manager.IndexToNode(index)
route_load += data["demands"][node_index]
plan_output += f" {node_index} Load({route_load}) -> "
previous_index = index
index = solution.Value(routing.NextVar(index))
route_distance += routing.GetArcCostForVehicle(
previous_index, index, vehicle_id
)
plan_output += f" {manager.IndexToNode(index)} Load({route_load})\n"
plan_output += f"Distance of the route: {route_distance}m\n"
plan_output += f"Load of the route: {route_load}\n"
print(plan_output)
total_distance += route_distance
total_load += route_load
print(f"Total distance of all routes: {total_distance}m")
print(f"Total load of all routes: {total_load}")
C++
//! @brief Print the solution.
//! @param[in] data Data of the problem.
//! @param[in] manager Index manager used.
//! @param[in] routing Routing solver used.
//! @param[in] solution Solution found by the solver.
void PrintSolution(const DataModel& data, const RoutingIndexManager& manager,
const RoutingModel& routing, const Assignment& solution) {
int64_t total_distance = 0;
int64_t total_load = 0;
for (int vehicle_id = 0; vehicle_id < data.num_vehicles; ++vehicle_id) {
int64_t index = routing.Start(vehicle_id);
LOG(INFO) << "Route for Vehicle " << vehicle_id << ":";
int64_t route_distance = 0;
int64_t route_load = 0;
std::stringstream route;
while (!routing.IsEnd(index)) {
const int node_index = manager.IndexToNode(index).value();
route_load += data.demands[node_index];
route << node_index << " Load(" << route_load << ") -> ";
const int64_t previous_index = index;
index = solution.Value(routing.NextVar(index));
route_distance += routing.GetArcCostForVehicle(previous_index, index,
int64_t{vehicle_id});
}
LOG(INFO) << route.str() << manager.IndexToNode(index).value();
LOG(INFO) << "Distance of the route: " << route_distance << "m";
LOG(INFO) << "Load of the route: " << route_load;
total_distance += route_distance;
total_load += route_load;
}
LOG(INFO) << "Total distance of all routes: " << total_distance << "m";
LOG(INFO) << "Total load of all routes: " << total_load;
LOG(INFO) << "";
LOG(INFO) << "Advanced usage:";
LOG(INFO) << "Problem solved in " << routing.solver()->wall_time() << "ms";
}
Java
/// @brief Print the solution.
static void printSolution(
DataModel data, RoutingModel routing, RoutingIndexManager manager, Assignment solution) {
// Solution cost.
logger.info("Objective: " + solution.objectiveValue());
// Inspect solution.
long totalDistance = 0;
long totalLoad = 0;
for (int i = 0; i < data.vehicleNumber; ++i) {
long index = routing.start(i);
logger.info("Route for Vehicle " + i + ":");
long routeDistance = 0;
long routeLoad = 0;
String route = "";
while (!routing.isEnd(index)) {
long nodeIndex = manager.indexToNode(index);
routeLoad += data.demands[(int) nodeIndex];
route += nodeIndex + " Load(" + routeLoad + ") -> ";
long previousIndex = index;
index = solution.value(routing.nextVar(index));
routeDistance += routing.getArcCostForVehicle(previousIndex, index, i);
}
route += manager.indexToNode(routing.end(i));
logger.info(route);
logger.info("Distance of the route: " + routeDistance + "m");
totalDistance += routeDistance;
totalLoad += routeLoad;
}
logger.info("Total distance of all routes: " + totalDistance + "m");
logger.info("Total load of all routes: " + totalLoad);
}
C#
/// <summary>
/// Print the solution.
/// </summary>
static void PrintSolution(in DataModel data, in RoutingModel routing, in RoutingIndexManager manager,
in Assignment solution)
{
Console.WriteLine($"Objective {solution.ObjectiveValue()}:");
// Inspect solution.
long totalDistance = 0;
long totalLoad = 0;
for (int i = 0; i < data.VehicleNumber; ++i)
{
Console.WriteLine("Route for Vehicle {0}:", i);
long routeDistance = 0;
long routeLoad = 0;
var index = routing.Start(i);
while (routing.IsEnd(index) == false)
{
long nodeIndex = manager.IndexToNode(index);
routeLoad += data.Demands[nodeIndex];
Console.Write("{0} Load({1}) -> ", nodeIndex, routeLoad);
var previousIndex = index;
index = solution.Value(routing.NextVar(index));
routeDistance += routing.GetArcCostForVehicle(previousIndex, index, 0);
}
Console.WriteLine("{0}", manager.IndexToNode((int)index));
Console.WriteLine("Distance of the route: {0}m", routeDistance);
totalDistance += routeDistance;
totalLoad += routeLoad;
}
Console.WriteLine("Total distance of all routes: {0}m", totalDistance);
Console.WriteLine("Total load of all routes: {0}m", totalLoad);
}
主函式
這個範例中的主函式與 TSP 示例,但也在 需求與容量維度。
執行程式
請參閱下一節瞭解完整的計畫。 執行程式時,系統會顯示以下輸出內容:
Objective: 6208 Route for vehicle 0: 0 Load(0) -> 4 Load(0) -> 3 Load(4) -> 1 Load(6) -> 7 Load(7) -> 0 Load(15) Distance of the route: 1552m Load of the route: 15 Route for vehicle 1: 0 Load(0) -> 14 Load(0) -> 16 Load(4) -> 10 Load(12) -> 9 Load(14) -> 0 Load(15) Distance of the route: 1552m Load of the route: 15 Route for vehicle 2: 0 Load(0) -> 12 Load(0) -> 11 Load(2) -> 15 Load(3) -> 13 Load(11) -> 0 Load(15) Distance of the route: 1552m Load of the route: 15 Route for vehicle 3: 0 Load(0) -> 8 Load(0) -> 2 Load(8) -> 6 Load(9) -> 5 Load(13) -> 0 Load(15) Distance of the route: 1552m Load of the route: 15 Total Distance of all routes: 6208m Total Load of all routes: 60
對於路線上的每個位置,輸出結果會顯示:
- 位置的索引。
車輛出發前往地點所承載的總負載量。
路徑如下所示。
完成計畫
下方是有關電容式車輛路線問題的完整計畫。
Python
"""Capacited Vehicles Routing Problem (CVRP)."""
from ortools.constraint_solver import routing_enums_pb2
from ortools.constraint_solver import pywrapcp
def create_data_model():
"""Stores the data for the problem."""
data = {}
data["distance_matrix"] = [
# fmt: off
[0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662],
[548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210],
[776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754],
[696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358],
[582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244],
[274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708],
[502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480],
[194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856],
[308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514],
[194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468],
[536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354],
[502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844],
[388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730],
[354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536],
[468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194],
[776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798],
[662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0],
# fmt: on
]
data["demands"] = [0, 1, 1, 2, 4, 2, 4, 8, 8, 1, 2, 1, 2, 4, 4, 8, 8]
data["vehicle_capacities"] = [15, 15, 15, 15]
data["num_vehicles"] = 4
data["depot"] = 0
return data
def print_solution(data, manager, routing, solution):
"""Prints solution on console."""
print(f"Objective: {solution.ObjectiveValue()}")
total_distance = 0
total_load = 0
for vehicle_id in range(data["num_vehicles"]):
index = routing.Start(vehicle_id)
plan_output = f"Route for vehicle {vehicle_id}:\n"
route_distance = 0
route_load = 0
while not routing.IsEnd(index):
node_index = manager.IndexToNode(index)
route_load += data["demands"][node_index]
plan_output += f" {node_index} Load({route_load}) -> "
previous_index = index
index = solution.Value(routing.NextVar(index))
route_distance += routing.GetArcCostForVehicle(
previous_index, index, vehicle_id
)
plan_output += f" {manager.IndexToNode(index)} Load({route_load})\n"
plan_output += f"Distance of the route: {route_distance}m\n"
plan_output += f"Load of the route: {route_load}\n"
print(plan_output)
total_distance += route_distance
total_load += route_load
print(f"Total distance of all routes: {total_distance}m")
print(f"Total load of all routes: {total_load}")
def main():
"""Solve the CVRP problem."""
# Instantiate the data problem.
data = create_data_model()
# Create the routing index manager.
manager = pywrapcp.RoutingIndexManager(
len(data["distance_matrix"]), data["num_vehicles"], data["depot"]
)
# Create Routing Model.
routing = pywrapcp.RoutingModel(manager)
# Create and register a transit callback.
def distance_callback(from_index, to_index):
"""Returns the distance between the two nodes."""
# Convert from routing variable Index to distance matrix NodeIndex.
from_node = manager.IndexToNode(from_index)
to_node = manager.IndexToNode(to_index)
return data["distance_matrix"][from_node][to_node]
transit_callback_index = routing.RegisterTransitCallback(distance_callback)
# Define cost of each arc.
routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)
# Add Capacity constraint.
def demand_callback(from_index):
"""Returns the demand of the node."""
# Convert from routing variable Index to demands NodeIndex.
from_node = manager.IndexToNode(from_index)
return data["demands"][from_node]
demand_callback_index = routing.RegisterUnaryTransitCallback(demand_callback)
routing.AddDimensionWithVehicleCapacity(
demand_callback_index,
0, # null capacity slack
data["vehicle_capacities"], # vehicle maximum capacities
True, # start cumul to zero
"Capacity",
)
# Setting first solution heuristic.
search_parameters = pywrapcp.DefaultRoutingSearchParameters()
search_parameters.first_solution_strategy = (
routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC
)
search_parameters.local_search_metaheuristic = (
routing_enums_pb2.LocalSearchMetaheuristic.GUIDED_LOCAL_SEARCH
)
search_parameters.time_limit.FromSeconds(1)
# Solve the problem.
solution = routing.SolveWithParameters(search_parameters)
# Print solution on console.
if solution:
print_solution(data, manager, routing, solution)
if __name__ == "__main__":
main()
C++
#include <cstdint>
#include <sstream>
#include <vector>
#include "google/protobuf/duration.pb.h"
#include "ortools/constraint_solver/routing.h"
#include "ortools/constraint_solver/routing_enums.pb.h"
#include "ortools/constraint_solver/routing_index_manager.h"
#include "ortools/constraint_solver/routing_parameters.h"
namespace operations_research {
struct DataModel {
const std::vector<std::vector<int64_t>> distance_matrix{
{0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468,
776, 662},
{548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674,
1016, 868, 1210},
{776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130,
788, 1552, 754},
{696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822,
1164, 560, 1358},
{582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708,
1050, 674, 1244},
{274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514,
1050, 708},
{502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514,
1278, 480},
{194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662,
742, 856},
{308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320,
1084, 514},
{194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274,
810, 468},
{536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730,
388, 1152, 354},
{502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308,
650, 274, 844},
{388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536,
388, 730},
{354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342,
422, 536},
{468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342,
0, 764, 194},
{776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388,
422, 764, 0, 798},
{662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536,
194, 798, 0},
};
const std::vector<int64_t> demands{
0, 1, 1, 2, 4, 2, 4, 8, 8, 1, 2, 1, 2, 4, 4, 8, 8,
};
const std::vector<int64_t> vehicle_capacities{15, 15, 15, 15};
const int num_vehicles = 4;
const RoutingIndexManager::NodeIndex depot{0};
};
//! @brief Print the solution.
//! @param[in] data Data of the problem.
//! @param[in] manager Index manager used.
//! @param[in] routing Routing solver used.
//! @param[in] solution Solution found by the solver.
void PrintSolution(const DataModel& data, const RoutingIndexManager& manager,
const RoutingModel& routing, const Assignment& solution) {
int64_t total_distance = 0;
int64_t total_load = 0;
for (int vehicle_id = 0; vehicle_id < data.num_vehicles; ++vehicle_id) {
int64_t index = routing.Start(vehicle_id);
LOG(INFO) << "Route for Vehicle " << vehicle_id << ":";
int64_t route_distance = 0;
int64_t route_load = 0;
std::stringstream route;
while (!routing.IsEnd(index)) {
const int node_index = manager.IndexToNode(index).value();
route_load += data.demands[node_index];
route << node_index << " Load(" << route_load << ") -> ";
const int64_t previous_index = index;
index = solution.Value(routing.NextVar(index));
route_distance += routing.GetArcCostForVehicle(previous_index, index,
int64_t{vehicle_id});
}
LOG(INFO) << route.str() << manager.IndexToNode(index).value();
LOG(INFO) << "Distance of the route: " << route_distance << "m";
LOG(INFO) << "Load of the route: " << route_load;
total_distance += route_distance;
total_load += route_load;
}
LOG(INFO) << "Total distance of all routes: " << total_distance << "m";
LOG(INFO) << "Total load of all routes: " << total_load;
LOG(INFO) << "";
LOG(INFO) << "Advanced usage:";
LOG(INFO) << "Problem solved in " << routing.solver()->wall_time() << "ms";
}
void VrpCapacity() {
// Instantiate the data problem.
DataModel data;
// Create Routing Index Manager
RoutingIndexManager manager(data.distance_matrix.size(), data.num_vehicles,
data.depot);
// Create Routing Model.
RoutingModel routing(manager);
// Create and register a transit callback.
const int transit_callback_index = routing.RegisterTransitCallback(
[&data, &manager](const int64_t from_index,
const int64_t to_index) -> int64_t {
// Convert from routing variable Index to distance matrix NodeIndex.
const int from_node = manager.IndexToNode(from_index).value();
const int to_node = manager.IndexToNode(to_index).value();
return data.distance_matrix[from_node][to_node];
});
// Define cost of each arc.
routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index);
// Add Capacity constraint.
const int demand_callback_index = routing.RegisterUnaryTransitCallback(
[&data, &manager](const int64_t from_index) -> int64_t {
// Convert from routing variable Index to demand NodeIndex.
const int from_node = manager.IndexToNode(from_index).value();
return data.demands[from_node];
});
routing.AddDimensionWithVehicleCapacity(
demand_callback_index, // transit callback index
int64_t{0}, // null capacity slack
data.vehicle_capacities, // vehicle maximum capacities
true, // start cumul to zero
"Capacity");
// Setting first solution heuristic.
RoutingSearchParameters search_parameters = DefaultRoutingSearchParameters();
search_parameters.set_first_solution_strategy(
FirstSolutionStrategy::PATH_CHEAPEST_ARC);
search_parameters.set_local_search_metaheuristic(
LocalSearchMetaheuristic::GUIDED_LOCAL_SEARCH);
search_parameters.mutable_time_limit()->set_seconds(1);
// Solve the problem.
const Assignment* solution = routing.SolveWithParameters(search_parameters);
// Print solution on console.
PrintSolution(data, manager, routing, *solution);
}
} // namespace operations_research
int main(int /*argc*/, char* /*argv*/[]) {
operations_research::VrpCapacity();
return EXIT_SUCCESS;
}
Java
package com.google.ortools.constraintsolver.samples;
import com.google.ortools.Loader;
import com.google.ortools.constraintsolver.Assignment;
import com.google.ortools.constraintsolver.FirstSolutionStrategy;
import com.google.ortools.constraintsolver.LocalSearchMetaheuristic;
import com.google.ortools.constraintsolver.RoutingIndexManager;
import com.google.ortools.constraintsolver.RoutingModel;
import com.google.ortools.constraintsolver.RoutingSearchParameters;
import com.google.ortools.constraintsolver.main;
import com.google.protobuf.Duration;
import java.util.logging.Logger;
/** Minimal VRP. */
public final class VrpCapacity {
private static final Logger logger = Logger.getLogger(VrpCapacity.class.getName());
static class DataModel {
public final long[][] distanceMatrix = {
{0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662},
{548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210},
{776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754},
{696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358},
{582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244},
{274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708},
{502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480},
{194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856},
{308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514},
{194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468},
{536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354},
{502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844},
{388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730},
{354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536},
{468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194},
{776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798},
{662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0},
};
public final long[] demands = {0, 1, 1, 2, 4, 2, 4, 8, 8, 1, 2, 1, 2, 4, 4, 8, 8};
public final long[] vehicleCapacities = {15, 15, 15, 15};
public final int vehicleNumber = 4;
public final int depot = 0;
}
/// @brief Print the solution.
static void printSolution(
DataModel data, RoutingModel routing, RoutingIndexManager manager, Assignment solution) {
// Solution cost.
logger.info("Objective: " + solution.objectiveValue());
// Inspect solution.
long totalDistance = 0;
long totalLoad = 0;
for (int i = 0; i < data.vehicleNumber; ++i) {
long index = routing.start(i);
logger.info("Route for Vehicle " + i + ":");
long routeDistance = 0;
long routeLoad = 0;
String route = "";
while (!routing.isEnd(index)) {
long nodeIndex = manager.indexToNode(index);
routeLoad += data.demands[(int) nodeIndex];
route += nodeIndex + " Load(" + routeLoad + ") -> ";
long previousIndex = index;
index = solution.value(routing.nextVar(index));
routeDistance += routing.getArcCostForVehicle(previousIndex, index, i);
}
route += manager.indexToNode(routing.end(i));
logger.info(route);
logger.info("Distance of the route: " + routeDistance + "m");
totalDistance += routeDistance;
totalLoad += routeLoad;
}
logger.info("Total distance of all routes: " + totalDistance + "m");
logger.info("Total load of all routes: " + totalLoad);
}
public static void main(String[] args) throws Exception {
Loader.loadNativeLibraries();
// Instantiate the data problem.
final DataModel data = new DataModel();
// Create Routing Index Manager
RoutingIndexManager manager =
new RoutingIndexManager(data.distanceMatrix.length, data.vehicleNumber, data.depot);
// Create Routing Model.
RoutingModel routing = new RoutingModel(manager);
// Create and register a transit callback.
final int transitCallbackIndex =
routing.registerTransitCallback((long fromIndex, long toIndex) -> {
// Convert from routing variable Index to user NodeIndex.
int fromNode = manager.indexToNode(fromIndex);
int toNode = manager.indexToNode(toIndex);
return data.distanceMatrix[fromNode][toNode];
});
// Define cost of each arc.
routing.setArcCostEvaluatorOfAllVehicles(transitCallbackIndex);
// Add Capacity constraint.
final int demandCallbackIndex = routing.registerUnaryTransitCallback((long fromIndex) -> {
// Convert from routing variable Index to user NodeIndex.
int fromNode = manager.indexToNode(fromIndex);
return data.demands[fromNode];
});
routing.addDimensionWithVehicleCapacity(demandCallbackIndex, 0, // null capacity slack
data.vehicleCapacities, // vehicle maximum capacities
true, // start cumul to zero
"Capacity");
// Setting first solution heuristic.
RoutingSearchParameters searchParameters =
main.defaultRoutingSearchParameters()
.toBuilder()
.setFirstSolutionStrategy(FirstSolutionStrategy.Value.PATH_CHEAPEST_ARC)
.setLocalSearchMetaheuristic(LocalSearchMetaheuristic.Value.GUIDED_LOCAL_SEARCH)
.setTimeLimit(Duration.newBuilder().setSeconds(1).build())
.build();
// Solve the problem.
Assignment solution = routing.solveWithParameters(searchParameters);
// Print solution on console.
printSolution(data, routing, manager, solution);
}
private VrpCapacity() {}
}
C#
using System;
using System.Collections.Generic;
using Google.OrTools.ConstraintSolver;
using Google.Protobuf.WellKnownTypes; // Duration
/// <summary>
/// Minimal TSP using distance matrix.
/// </summary>
public class VrpCapacity
{
class DataModel
{
public long[,] DistanceMatrix = {
{ 0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662 },
{ 548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210 },
{ 776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754 },
{ 696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358 },
{ 582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244 },
{ 274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708 },
{ 502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480 },
{ 194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856 },
{ 308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514 },
{ 194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468 },
{ 536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354 },
{ 502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844 },
{ 388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730 },
{ 354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536 },
{ 468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194 },
{ 776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798 },
{ 662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0 }
};
public long[] Demands = { 0, 1, 1, 2, 4, 2, 4, 8, 8, 1, 2, 1, 2, 4, 4, 8, 8 };
public long[] VehicleCapacities = { 15, 15, 15, 15 };
public int VehicleNumber = 4;
public int Depot = 0;
};
/// <summary>
/// Print the solution.
/// </summary>
static void PrintSolution(in DataModel data, in RoutingModel routing, in RoutingIndexManager manager,
in Assignment solution)
{
Console.WriteLine($"Objective {solution.ObjectiveValue()}:");
// Inspect solution.
long totalDistance = 0;
long totalLoad = 0;
for (int i = 0; i < data.VehicleNumber; ++i)
{
Console.WriteLine("Route for Vehicle {0}:", i);
long routeDistance = 0;
long routeLoad = 0;
var index = routing.Start(i);
while (routing.IsEnd(index) == false)
{
long nodeIndex = manager.IndexToNode(index);
routeLoad += data.Demands[nodeIndex];
Console.Write("{0} Load({1}) -> ", nodeIndex, routeLoad);
var previousIndex = index;
index = solution.Value(routing.NextVar(index));
routeDistance += routing.GetArcCostForVehicle(previousIndex, index, 0);
}
Console.WriteLine("{0}", manager.IndexToNode((int)index));
Console.WriteLine("Distance of the route: {0}m", routeDistance);
totalDistance += routeDistance;
totalLoad += routeLoad;
}
Console.WriteLine("Total distance of all routes: {0}m", totalDistance);
Console.WriteLine("Total load of all routes: {0}m", totalLoad);
}
public static void Main(String[] args)
{
// Instantiate the data problem.
DataModel data = new DataModel();
// Create Routing Index Manager
RoutingIndexManager manager =
new RoutingIndexManager(data.DistanceMatrix.GetLength(0), data.VehicleNumber, data.Depot);
// Create Routing Model.
RoutingModel routing = new RoutingModel(manager);
// Create and register a transit callback.
int transitCallbackIndex = routing.RegisterTransitCallback((long fromIndex, long toIndex) =>
{
// Convert from routing variable Index to
// distance matrix NodeIndex.
var fromNode = manager.IndexToNode(fromIndex);
var toNode = manager.IndexToNode(toIndex);
return data.DistanceMatrix[fromNode, toNode];
});
// Define cost of each arc.
routing.SetArcCostEvaluatorOfAllVehicles(transitCallbackIndex);
// Add Capacity constraint.
int demandCallbackIndex = routing.RegisterUnaryTransitCallback((long fromIndex) =>
{
// Convert from routing variable Index to
// demand NodeIndex.
var fromNode =
manager.IndexToNode(fromIndex);
return data.Demands[fromNode];
});
routing.AddDimensionWithVehicleCapacity(demandCallbackIndex, 0, // null capacity slack
data.VehicleCapacities, // vehicle maximum capacities
true, // start cumul to zero
"Capacity");
// Setting first solution heuristic.
RoutingSearchParameters searchParameters =
operations_research_constraint_solver.DefaultRoutingSearchParameters();
searchParameters.FirstSolutionStrategy = FirstSolutionStrategy.Types.Value.PathCheapestArc;
searchParameters.LocalSearchMetaheuristic = LocalSearchMetaheuristic.Types.Value.GuidedLocalSearch;
searchParameters.TimeLimit = new Duration { Seconds = 1 };
// Solve the problem.
Assignment solution = routing.SolveWithParameters(searchParameters);
// Print solution on console.
PrintSolution(data, routing, manager, solution);
}
}
以下列舉幾個其他類型的車輛路線問題 GitHub 的限制 (請尋找名稱中含有「vrp」的例子)。
如果問題沒有解決方案,會發生什麼情況?
具有限制條件的轉送問題 (例如 CVRP) 可能無法執行 解決方案。舉例來說,如果 傳輸量超過車輛總容量。如果您嘗試解決這類問題 解題工具可能會執行詳盡的搜尋,費時耗時 你最後還是必須放棄程式
這通常不會造成問題。然而,有幾種方法可以避免 程式,在沒有解決方法的情況下長時間執行:
- 在 程式,即使找不到解決方案,系統也會停止搜尋。不過 請記住,如果問題需要長時間搜尋才能解決 程式可能會在時間上限的情況下才找到解決方案。
- 設定捨棄營業地點造訪的處分。讓解題工具 傳回「解決方案」若是發生問題時,未造訪所有地點的資料 這種做法請參閱懲處和放棄造訪的相關說明。
一般來說,很難判斷問題是否擁有解決方案。就算是 代表總需求量不會超過總容量的 CVRP,用於判斷 物品全部都是 多個 Knapsack 問題。