Assegnazione con gruppi consentiti

Questa sezione descrive un problema di assegnazione in cui solo alcuni gruppi di worker consentiti possono essere assegnati alle attività. Nell'esempio ci sono dodici worker, numerati da 0 a 11. I gruppi consentiti sono combinazioni delle seguenti coppie di worker.

  group1 =  [[2, 3],       # Subgroups of workers 0 - 3
             [1, 3],
             [1, 2],
             [0, 1],
             [0, 2]]

group2 = [[6, 7], # Subgroups of workers 4 - 7 [5, 7], [5, 6], [4, 5], [4, 7]]

group3 = [[10, 11], # Subgroups of workers 8 - 11 [9, 11], [9, 10], [8, 10], [8, 11]]

Un gruppo consentito può essere una qualsiasi combinazione di tre coppie di worker, una coppia da ciascun gruppo1, gruppo2 e gruppo3. Ad esempio, la combinazione di [2, 3], [6, 7] e [10, 11] genera il gruppo consentito [2, 3, 6, 7, 10, 11]. Poiché ciascuno dei tre insiemi contiene cinque elementi, il numero totale di gruppi consentiti è 5 * 5 * 5 = 125.

Tieni presente che un gruppo di worker può essere una soluzione al problema se appartiene a uno qualsiasi dei gruppi consentiti. In altre parole, l'insieme fattibile è costituito da punti per i quali è soddisfatto uno qualsiasi dei vincoli. Questo è un esempio di problema non convesso. Al contrario, l'esempio MIP, descritto in precedenza, è un problema convesso: affinché un punto sia fattibile, tutti i vincoli devono essere soddisfatti.

Per problemi non convessi come questo, il risolutore CP-SAT di solito è più veloce di un risolutore MIP. Le seguenti sezioni presentano le soluzioni al problema utilizzando il risolutore CP-SAT e il risolutore MIP e confrontano i tempi di soluzione per i due risolutori.

Soluzione CP-SAT

Innanzitutto, descriveremo una soluzione al problema utilizzando il risolutore CP-SAT.

Importa le librerie

Il seguente codice importa la libreria richiesta.

Python

from ortools.sat.python import cp_model

C++

#include <stdlib.h>

#include <cstdint>
#include <numeric>
#include <vector>

#include "absl/strings/str_format.h"
#include "absl/types/span.h"
#include "ortools/base/logging.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"

Java

import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverStatus;
import com.google.ortools.sat.IntVar;
import com.google.ortools.sat.LinearExpr;
import com.google.ortools.sat.LinearExprBuilder;
import com.google.ortools.sat.Literal;
import java.util.ArrayList;
import java.util.List;
import java.util.stream.IntStream;

C#

using System;
using System.Collections.Generic;
using System.Linq;
using Google.OrTools.Sat;

Definire i dati

Il codice seguente crea i dati per il programma.

Python

costs = [
    [90, 76, 75, 70, 50, 74],
    [35, 85, 55, 65, 48, 101],
    [125, 95, 90, 105, 59, 120],
    [45, 110, 95, 115, 104, 83],
    [60, 105, 80, 75, 59, 62],
    [45, 65, 110, 95, 47, 31],
    [38, 51, 107, 41, 69, 99],
    [47, 85, 57, 71, 92, 77],
    [39, 63, 97, 49, 118, 56],
    [47, 101, 71, 60, 88, 109],
    [17, 39, 103, 64, 61, 92],
    [101, 45, 83, 59, 92, 27],
]
num_workers = len(costs)
num_tasks = len(costs[0])

C++

const std::vector<std::vector<int>> costs = {{
    {{90, 76, 75, 70, 50, 74}},
    {{35, 85, 55, 65, 48, 101}},
    {{125, 95, 90, 105, 59, 120}},
    {{45, 110, 95, 115, 104, 83}},
    {{60, 105, 80, 75, 59, 62}},
    {{45, 65, 110, 95, 47, 31}},
    {{38, 51, 107, 41, 69, 99}},
    {{47, 85, 57, 71, 92, 77}},
    {{39, 63, 97, 49, 118, 56}},
    {{47, 101, 71, 60, 88, 109}},
    {{17, 39, 103, 64, 61, 92}},
    {{101, 45, 83, 59, 92, 27}},
}};
const int num_workers = static_cast<int>(costs.size());
std::vector<int> all_workers(num_workers);
std::iota(all_workers.begin(), all_workers.end(), 0);

const int num_tasks = static_cast<int>(costs[0].size());
std::vector<int> all_tasks(num_tasks);
std::iota(all_tasks.begin(), all_tasks.end(), 0);

Java

int[][] costs = {
    {90, 76, 75, 70, 50, 74},
    {35, 85, 55, 65, 48, 101},
    {125, 95, 90, 105, 59, 120},
    {45, 110, 95, 115, 104, 83},
    {60, 105, 80, 75, 59, 62},
    {45, 65, 110, 95, 47, 31},
    {38, 51, 107, 41, 69, 99},
    {47, 85, 57, 71, 92, 77},
    {39, 63, 97, 49, 118, 56},
    {47, 101, 71, 60, 88, 109},
    {17, 39, 103, 64, 61, 92},
    {101, 45, 83, 59, 92, 27},
};
final int numWorkers = costs.length;
final int numTasks = costs[0].length;

final int[] allWorkers = IntStream.range(0, numWorkers).toArray();
final int[] allTasks = IntStream.range(0, numTasks).toArray();

C#

int[,] costs = {
    { 90, 76, 75, 70, 50, 74 },    { 35, 85, 55, 65, 48, 101 }, { 125, 95, 90, 105, 59, 120 },
    { 45, 110, 95, 115, 104, 83 }, { 60, 105, 80, 75, 59, 62 }, { 45, 65, 110, 95, 47, 31 },
    { 38, 51, 107, 41, 69, 99 },   { 47, 85, 57, 71, 92, 77 },  { 39, 63, 97, 49, 118, 56 },
    { 47, 101, 71, 60, 88, 109 },  { 17, 39, 103, 64, 61, 92 }, { 101, 45, 83, 59, 92, 27 },
};
int numWorkers = costs.GetLength(0);
int numTasks = costs.GetLength(1);

int[] allWorkers = Enumerable.Range(0, numWorkers).ToArray();
int[] allTasks = Enumerable.Range(0, numTasks).ToArray();

Crea i gruppi consentiti

Per definire i gruppi di worker consentiti per il risolutore CP-SAT, crea array binari che indicano quali worker appartengono a un gruppo. Ad esempio, per group1 (worker 0 - 3), il vettore binario [0, 0, 1, 1] specifica il gruppo che contiene i worker 2 e 3.

I seguenti array definiscono i gruppi di worker consentiti.

Python

group1 = [
    [0, 0, 1, 1],  # Workers 2, 3
    [0, 1, 0, 1],  # Workers 1, 3
    [0, 1, 1, 0],  # Workers 1, 2
    [1, 1, 0, 0],  # Workers 0, 1
    [1, 0, 1, 0],  # Workers 0, 2
]

group2 = [
    [0, 0, 1, 1],  # Workers 6, 7
    [0, 1, 0, 1],  # Workers 5, 7
    [0, 1, 1, 0],  # Workers 5, 6
    [1, 1, 0, 0],  # Workers 4, 5
    [1, 0, 0, 1],  # Workers 4, 7
]

group3 = [
    [0, 0, 1, 1],  # Workers 10, 11
    [0, 1, 0, 1],  # Workers 9, 11
    [0, 1, 1, 0],  # Workers 9, 10
    [1, 0, 1, 0],  # Workers 8, 10
    [1, 0, 0, 1],  # Workers 8, 11
]

C++

const std::vector<std::vector<int64_t>> group1 = {{
    {{0, 0, 1, 1}},  // Workers 2, 3
    {{0, 1, 0, 1}},  // Workers 1, 3
    {{0, 1, 1, 0}},  // Workers 1, 2
    {{1, 1, 0, 0}},  // Workers 0, 1
    {{1, 0, 1, 0}},  // Workers 0, 2
}};

const std::vector<std::vector<int64_t>> group2 = {{
    {{0, 0, 1, 1}},  // Workers 6, 7
    {{0, 1, 0, 1}},  // Workers 5, 7
    {{0, 1, 1, 0}},  // Workers 5, 6
    {{1, 1, 0, 0}},  // Workers 4, 5
    {{1, 0, 0, 1}},  // Workers 4, 7
}};

const std::vector<std::vector<int64_t>> group3 = {{
    {{0, 0, 1, 1}},  // Workers 10, 11
    {{0, 1, 0, 1}},  // Workers 9, 11
    {{0, 1, 1, 0}},  // Workers 9, 10
    {{1, 0, 1, 0}},  // Workers 8, 10
    {{1, 0, 0, 1}},  // Workers 8, 11
}};

Java

int[][] group1 = {
    {0, 0, 1, 1}, // Workers 2, 3
    {0, 1, 0, 1}, // Workers 1, 3
    {0, 1, 1, 0}, // Workers 1, 2
    {1, 1, 0, 0}, // Workers 0, 1
    {1, 0, 1, 0}, // Workers 0, 2
};

int[][] group2 = {
    {0, 0, 1, 1}, // Workers 6, 7
    {0, 1, 0, 1}, // Workers 5, 7
    {0, 1, 1, 0}, // Workers 5, 6
    {1, 1, 0, 0}, // Workers 4, 5
    {1, 0, 0, 1}, // Workers 4, 7
};

int[][] group3 = {
    {0, 0, 1, 1}, // Workers 10, 11
    {0, 1, 0, 1}, // Workers 9, 11
    {0, 1, 1, 0}, // Workers 9, 10
    {1, 0, 1, 0}, // Workers 8, 10
    {1, 0, 0, 1}, // Workers 8, 11
};

C#

long[,] group1 = {
    { 0, 0, 1, 1 }, // Workers 2, 3
    { 0, 1, 0, 1 }, // Workers 1, 3
    { 0, 1, 1, 0 }, // Workers 1, 2
    { 1, 1, 0, 0 }, // Workers 0, 1
    { 1, 0, 1, 0 }, // Workers 0, 2
};

long[,] group2 = {
    { 0, 0, 1, 1 }, // Workers 6, 7
    { 0, 1, 0, 1 }, // Workers 5, 7
    { 0, 1, 1, 0 }, // Workers 5, 6
    { 1, 1, 0, 0 }, // Workers 4, 5
    { 1, 0, 0, 1 }, // Workers 4, 7
};

long[,] group3 = {
    { 0, 0, 1, 1 }, // Workers 10, 11
    { 0, 1, 0, 1 }, // Workers 9, 11
    { 0, 1, 1, 0 }, // Workers 9, 10
    { 1, 0, 1, 0 }, // Workers 8, 10
    { 1, 0, 0, 1 }, // Workers 8, 11
};

Per CP-SAT non è necessario creare tutte le 125 combinazioni di questi vettori in un loop. Il risolutore CP-SAT fornisce un metodo, AllowedAssignments, che consente di specificare separatamente i vincoli per i gruppi consentiti per ognuno dei tre gruppi di worker (0 - 3, 4 - 7 e 8 - 11). Ecco come funziona:

Python

# Create variables for each worker, indicating whether they work on some task.
work = {}
for worker in range(num_workers):
    work[worker] = model.new_bool_var(f"work[{worker}]")

for worker in range(num_workers):
    for task in range(num_tasks):
        model.add(work[worker] == sum(x[worker, task] for task in range(num_tasks)))

# Define the allowed groups of worders
model.add_allowed_assignments([work[0], work[1], work[2], work[3]], group1)
model.add_allowed_assignments([work[4], work[5], work[6], work[7]], group2)
model.add_allowed_assignments([work[8], work[9], work[10], work[11]], group3)

C++

// Create variables for each worker, indicating whether they work on some
// task.
std::vector<IntVar> work(num_workers);
for (int worker : all_workers) {
  work[worker] = IntVar(
      cp_model.NewBoolVar().WithName(absl::StrFormat("work[%d]", worker)));
}

for (int worker : all_workers) {
  LinearExpr task_sum;
  for (int task : all_tasks) {
    task_sum += x[worker][task];
  }
  cp_model.AddEquality(work[worker], task_sum);
}

// Define the allowed groups of worders
auto table1 =
    cp_model.AddAllowedAssignments({work[0], work[1], work[2], work[3]});
for (const auto& t : group1) {
  table1.AddTuple(t);
}
auto table2 =
    cp_model.AddAllowedAssignments({work[4], work[5], work[6], work[7]});
for (const auto& t : group2) {
  table2.AddTuple(t);
}
auto table3 =
    cp_model.AddAllowedAssignments({work[8], work[9], work[10], work[11]});
for (const auto& t : group3) {
  table3.AddTuple(t);
}

Java

// Create variables for each worker, indicating whether they work on some task.
IntVar[] work = new IntVar[numWorkers];
for (int worker : allWorkers) {
  work[worker] = model.newBoolVar("work[" + worker + "]");
}

for (int worker : allWorkers) {
  LinearExprBuilder expr = LinearExpr.newBuilder();
  for (int task : allTasks) {
    expr.add(x[worker][task]);
  }
  model.addEquality(work[worker], expr);
}

// Define the allowed groups of worders
model.addAllowedAssignments(new IntVar[] {work[0], work[1], work[2], work[3]})
    .addTuples(group1);
model.addAllowedAssignments(new IntVar[] {work[4], work[5], work[6], work[7]})
    .addTuples(group2);
model.addAllowedAssignments(new IntVar[] {work[8], work[9], work[10], work[11]})
    .addTuples(group3);

C#

// Create variables for each worker, indicating whether they work on some task.
BoolVar[] work = new BoolVar[numWorkers];
foreach (int worker in allWorkers)
{
    work[worker] = model.NewBoolVar($"work[{worker}]");
}

foreach (int worker in allWorkers)
{
    List<ILiteral> tasks = new List<ILiteral>();
    foreach (int task in allTasks)
    {
        tasks.Add(x[worker, task]);
    }
    model.Add(work[worker] == LinearExpr.Sum(tasks));
}

// Define the allowed groups of worders
model.AddAllowedAssignments(new IntVar[] { work[0], work[1], work[2], work[3] }).AddTuples(group1);
model.AddAllowedAssignments(new IntVar[] { work[4], work[5], work[6], work[7] }).AddTuples(group2);
model.AddAllowedAssignments(new IntVar[] { work[8], work[9], work[10], work[11] }).AddTuples(group3);

Le variabili work[i] sono variabili 0-1 che indicano lo stato del lavoro o ogni lavoratore. In altre parole, work[i] equivale a 1 se il worker i è assegnato a un'attività e 0 negli altri casi. La riga solver.Add(solver.AllowedAssignments([work[0], work[1], work[2], work[3]], group1)) definisce il vincolo secondo cui lo stato di lavoro dei worker 0 - 3 deve corrispondere a uno dei pattern in group1. Per i dettagli completi del codice, consulta la prossima sezione.

Crea il modello

Il codice seguente crea il modello.

Python

model = cp_model.CpModel()

C++

CpModelBuilder cp_model;

Java

CpModel model = new CpModel();

C#

CpModel model = new CpModel();

Crea le variabili

Il codice seguente crea un array di variabili per il problema.

Python

x = {}
for worker in range(num_workers):
    for task in range(num_tasks):
        x[worker, task] = model.new_bool_var(f"x[{worker},{task}]")

C++

// x[i][j] is an array of Boolean variables. x[i][j] is true
// if worker i is assigned to task j.
std::vector<std::vector<BoolVar>> x(num_workers,
                                    std::vector<BoolVar>(num_tasks));
for (int worker : all_workers) {
  for (int task : all_tasks) {
    x[worker][task] = cp_model.NewBoolVar().WithName(
        absl::StrFormat("x[%d,%d]", worker, task));
  }
}

Java

Literal[][] x = new Literal[numWorkers][numTasks];
for (int worker : allWorkers) {
  for (int task : allTasks) {
    x[worker][task] = model.newBoolVar("x[" + worker + "," + task + "]");
  }
}

C#

BoolVar[,] x = new BoolVar[numWorkers, numTasks];
// Variables in a 1-dim array.
foreach (int worker in allWorkers)
{
    foreach (int task in allTasks)
    {
        x[worker, task] = model.NewBoolVar($"x[{worker},{task}]");
    }
}

Aggiungi i vincoli

Il codice seguente crea i vincoli per il programma.

Python

# Each worker is assigned to at most one task.
for worker in range(num_workers):
    model.add_at_most_one(x[worker, task] for task in range(num_tasks))

# Each task is assigned to exactly one worker.
for task in range(num_tasks):
    model.add_exactly_one(x[worker, task] for worker in range(num_workers))

C++

// Each worker is assigned to at most one task.
for (int worker : all_workers) {
  cp_model.AddAtMostOne(x[worker]);
}
// Each task is assigned to exactly one worker.
for (int task : all_tasks) {
  std::vector<BoolVar> tasks;
  for (int worker : all_workers) {
    tasks.push_back(x[worker][task]);
  }
  cp_model.AddExactlyOne(tasks);
}

Java

// Each worker is assigned to at most one task.
for (int worker : allWorkers) {
  List<Literal> tasks = new ArrayList<>();
  for (int task : allTasks) {
    tasks.add(x[worker][task]);
  }
  model.addAtMostOne(tasks);
}

// Each task is assigned to exactly one worker.
for (int task : allTasks) {
  List<Literal> workers = new ArrayList<>();
  for (int worker : allWorkers) {
    workers.add(x[worker][task]);
  }
  model.addExactlyOne(workers);
}

C#

// Each worker is assigned to at most one task.
foreach (int worker in allWorkers)
{
    List<ILiteral> tasks = new List<ILiteral>();
    foreach (int task in allTasks)
    {
        tasks.Add(x[worker, task]);
    }
    model.AddAtMostOne(tasks);
}

// Each task is assigned to exactly one worker.
foreach (int task in allTasks)
{
    List<ILiteral> workers = new List<ILiteral>();
    foreach (int worker in allWorkers)
    {
        workers.Add(x[worker, task]);
    }
    model.AddExactlyOne(workers);
}

Crea l'obiettivo

Il codice seguente crea la funzione obiettivo.

Python

objective_terms = []
for worker in range(num_workers):
    for task in range(num_tasks):
        objective_terms.append(costs[worker][task] * x[worker, task])
model.minimize(sum(objective_terms))

C++

LinearExpr total_cost;
for (int worker : all_workers) {
  for (int task : all_tasks) {
    total_cost += x[worker][task] * costs[worker][task];
  }
}
cp_model.Minimize(total_cost);

Java

LinearExprBuilder obj = LinearExpr.newBuilder();
for (int worker : allWorkers) {
  for (int task : allTasks) {
    obj.addTerm(x[worker][task], costs[worker][task]);
  }
}
model.minimize(obj);

C#

LinearExprBuilder obj = LinearExpr.NewBuilder();
foreach (int worker in allWorkers)
{
    foreach (int task in allTasks)
    {
        obj.AddTerm(x[worker, task], costs[worker, task]);
    }
}
model.Minimize(obj);

Richiama il risolutore

Il codice seguente richiama il risolutore e visualizza i risultati.

Python

solver = cp_model.CpSolver()
status = solver.solve(model)

C++

const CpSolverResponse response = Solve(cp_model.Build());

Java

CpSolver solver = new CpSolver();
CpSolverStatus status = solver.solve(model);

C#

CpSolver solver = new CpSolver();
CpSolverStatus status = solver.Solve(model);
Console.WriteLine($"Solve status: {status}");

Visualizza i risultati

Ora possiamo stampare la soluzione.

Python

if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE:
    print(f"Total cost = {solver.objective_value}\n")
    for worker in range(num_workers):
        for task in range(num_tasks):
            if solver.boolean_value(x[worker, task]):
                print(
                    f"Worker {worker} assigned to task {task}."
                    + f" Cost = {costs[worker][task]}"
                )
else:
    print("No solution found.")

C++

if (response.status() == CpSolverStatus::INFEASIBLE) {
  LOG(FATAL) << "No solution found.";
}
LOG(INFO) << "Total cost: " << response.objective_value();
LOG(INFO);
for (int worker : all_workers) {
  for (int task : all_tasks) {
    if (SolutionBooleanValue(response, x[worker][task])) {
      LOG(INFO) << "Worker " << worker << " assigned to task " << task
                << ".  Cost: " << costs[worker][task];
    }
  }
}

Java

// Check that the problem has a feasible solution.
if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) {
  System.out.println("Total cost: " + solver.objectiveValue() + "\n");
  for (int worker : allWorkers) {
    for (int task : allTasks) {
      if (solver.booleanValue(x[worker][task])) {
        System.out.println("Worker " + worker + " assigned to task " + task
            + ".  Cost: " + costs[worker][task]);
      }
    }
  }
} else {
  System.err.println("No solution found.");
}

C#

// Check that the problem has a feasible solution.
if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible)
{
    Console.WriteLine($"Total cost: {solver.ObjectiveValue}\n");
    foreach (int worker in allWorkers)
    {
        foreach (int task in allTasks)
        {
            if (solver.Value(x[worker, task]) > 0.5)
            {
                Console.WriteLine($"Worker {worker} assigned to task {task}. " +
                                  $"Cost: {costs[worker, task]}");
            }
        }
    }
}
else
{
    Console.WriteLine("No solution found.");
}

Ecco l'output del programma.

Minimum cost = 239

Worker  0  assigned to task  4   Cost =  50
Worker  1  assigned to task  2   Cost =  55
Worker  5  assigned to task  5   Cost =  31
Worker  6  assigned to task  3   Cost =  41
Worker  10  assigned to task  0   Cost =  17
Worker  11  assigned to task  1   Cost =  45

Time =  0.0113 seconds

L'intero programma

Ecco tutto il programma.

Python

"""Solves an assignment problem for given group of workers."""
from ortools.sat.python import cp_model


def main() -> None:
    # Data
    costs = [
        [90, 76, 75, 70, 50, 74],
        [35, 85, 55, 65, 48, 101],
        [125, 95, 90, 105, 59, 120],
        [45, 110, 95, 115, 104, 83],
        [60, 105, 80, 75, 59, 62],
        [45, 65, 110, 95, 47, 31],
        [38, 51, 107, 41, 69, 99],
        [47, 85, 57, 71, 92, 77],
        [39, 63, 97, 49, 118, 56],
        [47, 101, 71, 60, 88, 109],
        [17, 39, 103, 64, 61, 92],
        [101, 45, 83, 59, 92, 27],
    ]
    num_workers = len(costs)
    num_tasks = len(costs[0])

    # Allowed groups of workers:
    group1 = [
        [0, 0, 1, 1],  # Workers 2, 3
        [0, 1, 0, 1],  # Workers 1, 3
        [0, 1, 1, 0],  # Workers 1, 2
        [1, 1, 0, 0],  # Workers 0, 1
        [1, 0, 1, 0],  # Workers 0, 2
    ]

    group2 = [
        [0, 0, 1, 1],  # Workers 6, 7
        [0, 1, 0, 1],  # Workers 5, 7
        [0, 1, 1, 0],  # Workers 5, 6
        [1, 1, 0, 0],  # Workers 4, 5
        [1, 0, 0, 1],  # Workers 4, 7
    ]

    group3 = [
        [0, 0, 1, 1],  # Workers 10, 11
        [0, 1, 0, 1],  # Workers 9, 11
        [0, 1, 1, 0],  # Workers 9, 10
        [1, 0, 1, 0],  # Workers 8, 10
        [1, 0, 0, 1],  # Workers 8, 11
    ]

    # Model
    model = cp_model.CpModel()

    # Variables
    x = {}
    for worker in range(num_workers):
        for task in range(num_tasks):
            x[worker, task] = model.new_bool_var(f"x[{worker},{task}]")

    # Constraints
    # Each worker is assigned to at most one task.
    for worker in range(num_workers):
        model.add_at_most_one(x[worker, task] for task in range(num_tasks))

    # Each task is assigned to exactly one worker.
    for task in range(num_tasks):
        model.add_exactly_one(x[worker, task] for worker in range(num_workers))

    # Create variables for each worker, indicating whether they work on some task.
    work = {}
    for worker in range(num_workers):
        work[worker] = model.new_bool_var(f"work[{worker}]")

    for worker in range(num_workers):
        for task in range(num_tasks):
            model.add(work[worker] == sum(x[worker, task] for task in range(num_tasks)))

    # Define the allowed groups of worders
    model.add_allowed_assignments([work[0], work[1], work[2], work[3]], group1)
    model.add_allowed_assignments([work[4], work[5], work[6], work[7]], group2)
    model.add_allowed_assignments([work[8], work[9], work[10], work[11]], group3)

    # Objective
    objective_terms = []
    for worker in range(num_workers):
        for task in range(num_tasks):
            objective_terms.append(costs[worker][task] * x[worker, task])
    model.minimize(sum(objective_terms))

    # Solve
    solver = cp_model.CpSolver()
    status = solver.solve(model)

    # Print solution.
    if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE:
        print(f"Total cost = {solver.objective_value}\n")
        for worker in range(num_workers):
            for task in range(num_tasks):
                if solver.boolean_value(x[worker, task]):
                    print(
                        f"Worker {worker} assigned to task {task}."
                        + f" Cost = {costs[worker][task]}"
                    )
    else:
        print("No solution found.")


if __name__ == "__main__":
    main()

C++

// Solve assignment problem for given group of workers.
#include <stdlib.h>

#include <cstdint>
#include <numeric>
#include <vector>

#include "absl/strings/str_format.h"
#include "absl/types/span.h"
#include "ortools/base/logging.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"

namespace operations_research {
namespace sat {

void AssignmentGroups() {
  // Data
  const std::vector<std::vector<int>> costs = {{
      {{90, 76, 75, 70, 50, 74}},
      {{35, 85, 55, 65, 48, 101}},
      {{125, 95, 90, 105, 59, 120}},
      {{45, 110, 95, 115, 104, 83}},
      {{60, 105, 80, 75, 59, 62}},
      {{45, 65, 110, 95, 47, 31}},
      {{38, 51, 107, 41, 69, 99}},
      {{47, 85, 57, 71, 92, 77}},
      {{39, 63, 97, 49, 118, 56}},
      {{47, 101, 71, 60, 88, 109}},
      {{17, 39, 103, 64, 61, 92}},
      {{101, 45, 83, 59, 92, 27}},
  }};
  const int num_workers = static_cast<int>(costs.size());
  std::vector<int> all_workers(num_workers);
  std::iota(all_workers.begin(), all_workers.end(), 0);

  const int num_tasks = static_cast<int>(costs[0].size());
  std::vector<int> all_tasks(num_tasks);
  std::iota(all_tasks.begin(), all_tasks.end(), 0);

  // Allowed groups of workers:
  const std::vector<std::vector<int64_t>> group1 = {{
      {{0, 0, 1, 1}},  // Workers 2, 3
      {{0, 1, 0, 1}},  // Workers 1, 3
      {{0, 1, 1, 0}},  // Workers 1, 2
      {{1, 1, 0, 0}},  // Workers 0, 1
      {{1, 0, 1, 0}},  // Workers 0, 2
  }};

  const std::vector<std::vector<int64_t>> group2 = {{
      {{0, 0, 1, 1}},  // Workers 6, 7
      {{0, 1, 0, 1}},  // Workers 5, 7
      {{0, 1, 1, 0}},  // Workers 5, 6
      {{1, 1, 0, 0}},  // Workers 4, 5
      {{1, 0, 0, 1}},  // Workers 4, 7
  }};

  const std::vector<std::vector<int64_t>> group3 = {{
      {{0, 0, 1, 1}},  // Workers 10, 11
      {{0, 1, 0, 1}},  // Workers 9, 11
      {{0, 1, 1, 0}},  // Workers 9, 10
      {{1, 0, 1, 0}},  // Workers 8, 10
      {{1, 0, 0, 1}},  // Workers 8, 11
  }};

  // Model
  CpModelBuilder cp_model;

  // Variables
  // x[i][j] is an array of Boolean variables. x[i][j] is true
  // if worker i is assigned to task j.
  std::vector<std::vector<BoolVar>> x(num_workers,
                                      std::vector<BoolVar>(num_tasks));
  for (int worker : all_workers) {
    for (int task : all_tasks) {
      x[worker][task] = cp_model.NewBoolVar().WithName(
          absl::StrFormat("x[%d,%d]", worker, task));
    }
  }

  // Constraints
  // Each worker is assigned to at most one task.
  for (int worker : all_workers) {
    cp_model.AddAtMostOne(x[worker]);
  }
  // Each task is assigned to exactly one worker.
  for (int task : all_tasks) {
    std::vector<BoolVar> tasks;
    for (int worker : all_workers) {
      tasks.push_back(x[worker][task]);
    }
    cp_model.AddExactlyOne(tasks);
  }

  // Create variables for each worker, indicating whether they work on some
  // task.
  std::vector<IntVar> work(num_workers);
  for (int worker : all_workers) {
    work[worker] = IntVar(
        cp_model.NewBoolVar().WithName(absl::StrFormat("work[%d]", worker)));
  }

  for (int worker : all_workers) {
    LinearExpr task_sum;
    for (int task : all_tasks) {
      task_sum += x[worker][task];
    }
    cp_model.AddEquality(work[worker], task_sum);
  }

  // Define the allowed groups of worders
  auto table1 =
      cp_model.AddAllowedAssignments({work[0], work[1], work[2], work[3]});
  for (const auto& t : group1) {
    table1.AddTuple(t);
  }
  auto table2 =
      cp_model.AddAllowedAssignments({work[4], work[5], work[6], work[7]});
  for (const auto& t : group2) {
    table2.AddTuple(t);
  }
  auto table3 =
      cp_model.AddAllowedAssignments({work[8], work[9], work[10], work[11]});
  for (const auto& t : group3) {
    table3.AddTuple(t);
  }

  // Objective
  LinearExpr total_cost;
  for (int worker : all_workers) {
    for (int task : all_tasks) {
      total_cost += x[worker][task] * costs[worker][task];
    }
  }
  cp_model.Minimize(total_cost);

  // Solve
  const CpSolverResponse response = Solve(cp_model.Build());

  // Print solution.
  if (response.status() == CpSolverStatus::INFEASIBLE) {
    LOG(FATAL) << "No solution found.";
  }
  LOG(INFO) << "Total cost: " << response.objective_value();
  LOG(INFO);
  for (int worker : all_workers) {
    for (int task : all_tasks) {
      if (SolutionBooleanValue(response, x[worker][task])) {
        LOG(INFO) << "Worker " << worker << " assigned to task " << task
                  << ".  Cost: " << costs[worker][task];
      }
    }
  }
}
}  // namespace sat
}  // namespace operations_research

int main(int argc, char** argv) {
  operations_research::sat::AssignmentGroups();
  return EXIT_SUCCESS;
}

Java

// CP-SAT example that solves an assignment problem.
package com.google.ortools.sat.samples;
import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverStatus;
import com.google.ortools.sat.IntVar;
import com.google.ortools.sat.LinearExpr;
import com.google.ortools.sat.LinearExprBuilder;
import com.google.ortools.sat.Literal;
import java.util.ArrayList;
import java.util.List;
import java.util.stream.IntStream;

/** Assignment problem. */
public class AssignmentGroupsSat {
  public static void main(String[] args) {
    Loader.loadNativeLibraries();
    // Data
    int[][] costs = {
        {90, 76, 75, 70, 50, 74},
        {35, 85, 55, 65, 48, 101},
        {125, 95, 90, 105, 59, 120},
        {45, 110, 95, 115, 104, 83},
        {60, 105, 80, 75, 59, 62},
        {45, 65, 110, 95, 47, 31},
        {38, 51, 107, 41, 69, 99},
        {47, 85, 57, 71, 92, 77},
        {39, 63, 97, 49, 118, 56},
        {47, 101, 71, 60, 88, 109},
        {17, 39, 103, 64, 61, 92},
        {101, 45, 83, 59, 92, 27},
    };
    final int numWorkers = costs.length;
    final int numTasks = costs[0].length;

    final int[] allWorkers = IntStream.range(0, numWorkers).toArray();
    final int[] allTasks = IntStream.range(0, numTasks).toArray();

    // Allowed groups of workers:
    int[][] group1 = {
        {0, 0, 1, 1}, // Workers 2, 3
        {0, 1, 0, 1}, // Workers 1, 3
        {0, 1, 1, 0}, // Workers 1, 2
        {1, 1, 0, 0}, // Workers 0, 1
        {1, 0, 1, 0}, // Workers 0, 2
    };

    int[][] group2 = {
        {0, 0, 1, 1}, // Workers 6, 7
        {0, 1, 0, 1}, // Workers 5, 7
        {0, 1, 1, 0}, // Workers 5, 6
        {1, 1, 0, 0}, // Workers 4, 5
        {1, 0, 0, 1}, // Workers 4, 7
    };

    int[][] group3 = {
        {0, 0, 1, 1}, // Workers 10, 11
        {0, 1, 0, 1}, // Workers 9, 11
        {0, 1, 1, 0}, // Workers 9, 10
        {1, 0, 1, 0}, // Workers 8, 10
        {1, 0, 0, 1}, // Workers 8, 11
    };

    // Model
    CpModel model = new CpModel();

    // Variables
    Literal[][] x = new Literal[numWorkers][numTasks];
    for (int worker : allWorkers) {
      for (int task : allTasks) {
        x[worker][task] = model.newBoolVar("x[" + worker + "," + task + "]");
      }
    }

    // Constraints
    // Each worker is assigned to at most one task.
    for (int worker : allWorkers) {
      List<Literal> tasks = new ArrayList<>();
      for (int task : allTasks) {
        tasks.add(x[worker][task]);
      }
      model.addAtMostOne(tasks);
    }

    // Each task is assigned to exactly one worker.
    for (int task : allTasks) {
      List<Literal> workers = new ArrayList<>();
      for (int worker : allWorkers) {
        workers.add(x[worker][task]);
      }
      model.addExactlyOne(workers);
    }

    // Create variables for each worker, indicating whether they work on some task.
    IntVar[] work = new IntVar[numWorkers];
    for (int worker : allWorkers) {
      work[worker] = model.newBoolVar("work[" + worker + "]");
    }

    for (int worker : allWorkers) {
      LinearExprBuilder expr = LinearExpr.newBuilder();
      for (int task : allTasks) {
        expr.add(x[worker][task]);
      }
      model.addEquality(work[worker], expr);
    }

    // Define the allowed groups of worders
    model.addAllowedAssignments(new IntVar[] {work[0], work[1], work[2], work[3]})
        .addTuples(group1);
    model.addAllowedAssignments(new IntVar[] {work[4], work[5], work[6], work[7]})
        .addTuples(group2);
    model.addAllowedAssignments(new IntVar[] {work[8], work[9], work[10], work[11]})
        .addTuples(group3);

    // Objective
    LinearExprBuilder obj = LinearExpr.newBuilder();
    for (int worker : allWorkers) {
      for (int task : allTasks) {
        obj.addTerm(x[worker][task], costs[worker][task]);
      }
    }
    model.minimize(obj);

    // Solve
    CpSolver solver = new CpSolver();
    CpSolverStatus status = solver.solve(model);

    // Print solution.
    // Check that the problem has a feasible solution.
    if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) {
      System.out.println("Total cost: " + solver.objectiveValue() + "\n");
      for (int worker : allWorkers) {
        for (int task : allTasks) {
          if (solver.booleanValue(x[worker][task])) {
            System.out.println("Worker " + worker + " assigned to task " + task
                + ".  Cost: " + costs[worker][task]);
          }
        }
      }
    } else {
      System.err.println("No solution found.");
    }
  }

  private AssignmentGroupsSat() {}
}

C#

using System;
using System.Collections.Generic;
using System.Linq;
using Google.OrTools.Sat;

public class AssignmentGroupsSat
{
    public static void Main(String[] args)
    {
        // Data.
        int[,] costs = {
            { 90, 76, 75, 70, 50, 74 },    { 35, 85, 55, 65, 48, 101 }, { 125, 95, 90, 105, 59, 120 },
            { 45, 110, 95, 115, 104, 83 }, { 60, 105, 80, 75, 59, 62 }, { 45, 65, 110, 95, 47, 31 },
            { 38, 51, 107, 41, 69, 99 },   { 47, 85, 57, 71, 92, 77 },  { 39, 63, 97, 49, 118, 56 },
            { 47, 101, 71, 60, 88, 109 },  { 17, 39, 103, 64, 61, 92 }, { 101, 45, 83, 59, 92, 27 },
        };
        int numWorkers = costs.GetLength(0);
        int numTasks = costs.GetLength(1);

        int[] allWorkers = Enumerable.Range(0, numWorkers).ToArray();
        int[] allTasks = Enumerable.Range(0, numTasks).ToArray();

        // Allowed groups of workers:
        long[,] group1 = {
            { 0, 0, 1, 1 }, // Workers 2, 3
            { 0, 1, 0, 1 }, // Workers 1, 3
            { 0, 1, 1, 0 }, // Workers 1, 2
            { 1, 1, 0, 0 }, // Workers 0, 1
            { 1, 0, 1, 0 }, // Workers 0, 2
        };

        long[,] group2 = {
            { 0, 0, 1, 1 }, // Workers 6, 7
            { 0, 1, 0, 1 }, // Workers 5, 7
            { 0, 1, 1, 0 }, // Workers 5, 6
            { 1, 1, 0, 0 }, // Workers 4, 5
            { 1, 0, 0, 1 }, // Workers 4, 7
        };

        long[,] group3 = {
            { 0, 0, 1, 1 }, // Workers 10, 11
            { 0, 1, 0, 1 }, // Workers 9, 11
            { 0, 1, 1, 0 }, // Workers 9, 10
            { 1, 0, 1, 0 }, // Workers 8, 10
            { 1, 0, 0, 1 }, // Workers 8, 11
        };

        // Model.
        CpModel model = new CpModel();

        // Variables.
        BoolVar[,] x = new BoolVar[numWorkers, numTasks];
        // Variables in a 1-dim array.
        foreach (int worker in allWorkers)
        {
            foreach (int task in allTasks)
            {
                x[worker, task] = model.NewBoolVar($"x[{worker},{task}]");
            }
        }

        // Constraints
        // Each worker is assigned to at most one task.
        foreach (int worker in allWorkers)
        {
            List<ILiteral> tasks = new List<ILiteral>();
            foreach (int task in allTasks)
            {
                tasks.Add(x[worker, task]);
            }
            model.AddAtMostOne(tasks);
        }

        // Each task is assigned to exactly one worker.
        foreach (int task in allTasks)
        {
            List<ILiteral> workers = new List<ILiteral>();
            foreach (int worker in allWorkers)
            {
                workers.Add(x[worker, task]);
            }
            model.AddExactlyOne(workers);
        }

        // Create variables for each worker, indicating whether they work on some task.
        BoolVar[] work = new BoolVar[numWorkers];
        foreach (int worker in allWorkers)
        {
            work[worker] = model.NewBoolVar($"work[{worker}]");
        }

        foreach (int worker in allWorkers)
        {
            List<ILiteral> tasks = new List<ILiteral>();
            foreach (int task in allTasks)
            {
                tasks.Add(x[worker, task]);
            }
            model.Add(work[worker] == LinearExpr.Sum(tasks));
        }

        // Define the allowed groups of worders
        model.AddAllowedAssignments(new IntVar[] { work[0], work[1], work[2], work[3] }).AddTuples(group1);
        model.AddAllowedAssignments(new IntVar[] { work[4], work[5], work[6], work[7] }).AddTuples(group2);
        model.AddAllowedAssignments(new IntVar[] { work[8], work[9], work[10], work[11] }).AddTuples(group3);

        // Objective
        LinearExprBuilder obj = LinearExpr.NewBuilder();
        foreach (int worker in allWorkers)
        {
            foreach (int task in allTasks)
            {
                obj.AddTerm(x[worker, task], costs[worker, task]);
            }
        }
        model.Minimize(obj);

        // Solve
        CpSolver solver = new CpSolver();
        CpSolverStatus status = solver.Solve(model);
        Console.WriteLine($"Solve status: {status}");

        // Print solution.
        // Check that the problem has a feasible solution.
        if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible)
        {
            Console.WriteLine($"Total cost: {solver.ObjectiveValue}\n");
            foreach (int worker in allWorkers)
            {
                foreach (int task in allTasks)
                {
                    if (solver.Value(x[worker, task]) > 0.5)
                    {
                        Console.WriteLine($"Worker {worker} assigned to task {task}. " +
                                          $"Cost: {costs[worker, task]}");
                    }
                }
            }
        }
        else
        {
            Console.WriteLine("No solution found.");
        }

        Console.WriteLine("Statistics");
        Console.WriteLine($"  - conflicts : {solver.NumConflicts()}");
        Console.WriteLine($"  - branches  : {solver.NumBranches()}");
        Console.WriteLine($"  - wall time : {solver.WallTime()}s");
    }
}

Soluzione MIP

Quindi descriviamo una soluzione al problema utilizzando il risolutore MIP.

Importa le librerie

Il seguente codice importa la libreria richiesta.

Python

from ortools.linear_solver import pywraplp

C++

#include <cstdint>
#include <memory>
#include <numeric>
#include <utility>
#include <vector>

#include "absl/strings/str_format.h"
#include "ortools/base/logging.h"
#include "ortools/linear_solver/linear_solver.h"

Java

import com.google.ortools.Loader;
import com.google.ortools.linearsolver.MPConstraint;
import com.google.ortools.linearsolver.MPObjective;
import com.google.ortools.linearsolver.MPSolver;
import com.google.ortools.linearsolver.MPVariable;
import java.util.stream.IntStream;

C#

using System;
using System.Collections.Generic;
using System.Linq;
using Google.OrTools.LinearSolver;

Definire i dati

Il codice seguente crea i dati per il programma.

Python

costs = [
    [90, 76, 75, 70, 50, 74],
    [35, 85, 55, 65, 48, 101],
    [125, 95, 90, 105, 59, 120],
    [45, 110, 95, 115, 104, 83],
    [60, 105, 80, 75, 59, 62],
    [45, 65, 110, 95, 47, 31],
    [38, 51, 107, 41, 69, 99],
    [47, 85, 57, 71, 92, 77],
    [39, 63, 97, 49, 118, 56],
    [47, 101, 71, 60, 88, 109],
    [17, 39, 103, 64, 61, 92],
    [101, 45, 83, 59, 92, 27],
]
num_workers = len(costs)
num_tasks = len(costs[0])

C++

const std::vector<std::vector<int64_t>> costs = {{
    {{90, 76, 75, 70, 50, 74}},
    {{35, 85, 55, 65, 48, 101}},
    {{125, 95, 90, 105, 59, 120}},
    {{45, 110, 95, 115, 104, 83}},
    {{60, 105, 80, 75, 59, 62}},
    {{45, 65, 110, 95, 47, 31}},
    {{38, 51, 107, 41, 69, 99}},
    {{47, 85, 57, 71, 92, 77}},
    {{39, 63, 97, 49, 118, 56}},
    {{47, 101, 71, 60, 88, 109}},
    {{17, 39, 103, 64, 61, 92}},
    {{101, 45, 83, 59, 92, 27}},
}};
const int num_workers = costs.size();
std::vector<int> all_workers(num_workers);
std::iota(all_workers.begin(), all_workers.end(), 0);

const int num_tasks = costs[0].size();
std::vector<int> all_tasks(num_tasks);
std::iota(all_tasks.begin(), all_tasks.end(), 0);

Java

double[][] costs = {
    {90, 76, 75, 70, 50, 74},
    {35, 85, 55, 65, 48, 101},
    {125, 95, 90, 105, 59, 120},
    {45, 110, 95, 115, 104, 83},
    {60, 105, 80, 75, 59, 62},
    {45, 65, 110, 95, 47, 31},
    {38, 51, 107, 41, 69, 99},
    {47, 85, 57, 71, 92, 77},
    {39, 63, 97, 49, 118, 56},
    {47, 101, 71, 60, 88, 109},
    {17, 39, 103, 64, 61, 92},
    {101, 45, 83, 59, 92, 27},
};
int numWorkers = costs.length;
int numTasks = costs[0].length;

final int[] allWorkers = IntStream.range(0, numWorkers).toArray();
final int[] allTasks = IntStream.range(0, numTasks).toArray();

C#

int[,] costs = {
    { 90, 76, 75, 70, 50, 74 },    { 35, 85, 55, 65, 48, 101 }, { 125, 95, 90, 105, 59, 120 },
    { 45, 110, 95, 115, 104, 83 }, { 60, 105, 80, 75, 59, 62 }, { 45, 65, 110, 95, 47, 31 },
    { 38, 51, 107, 41, 69, 99 },   { 47, 85, 57, 71, 92, 77 },  { 39, 63, 97, 49, 118, 56 },
    { 47, 101, 71, 60, 88, 109 },  { 17, 39, 103, 64, 61, 92 }, { 101, 45, 83, 59, 92, 27 },
};
int numWorkers = costs.GetLength(0);
int numTasks = costs.GetLength(1);

int[] allWorkers = Enumerable.Range(0, numWorkers).ToArray();
int[] allTasks = Enumerable.Range(0, numTasks).ToArray();

Crea i gruppi consentiti

Il codice seguente crea i gruppi consentiti eseguendo un loop dei tre insiemi di sottogruppi mostrati sopra.

Python

group1 = [  # Subgroups of workers 0 - 3
    [2, 3],
    [1, 3],
    [1, 2],
    [0, 1],
    [0, 2],
]

group2 = [  # Subgroups of workers 4 - 7
    [6, 7],
    [5, 7],
    [5, 6],
    [4, 5],
    [4, 7],
]

group3 = [  # Subgroups of workers 8 - 11
    [10, 11],
    [9, 11],
    [9, 10],
    [8, 10],
    [8, 11],
]

C++

using WorkerIndex = int;
using Binome = std::pair<WorkerIndex, WorkerIndex>;
using AllowedBinomes = std::vector<Binome>;
const AllowedBinomes group1 = {{
    // group of worker 0-3
    {2, 3},
    {1, 3},
    {1, 2},
    {0, 1},
    {0, 2},
}};

const AllowedBinomes group2 = {{
    // group of worker 4-7
    {6, 7},
    {5, 7},
    {5, 6},
    {4, 5},
    {4, 7},
}};

const AllowedBinomes group3 = {{
    // group of worker 8-11
    {10, 11},
    {9, 11},
    {9, 10},
    {8, 10},
    {8, 11},
}};

Java

int[][] group1 = {
    // group of worker 0-3
    {2, 3},
    {1, 3},
    {1, 2},
    {0, 1},
    {0, 2},
};

int[][] group2 = {
    // group of worker 4-7
    {6, 7},
    {5, 7},
    {5, 6},
    {4, 5},
    {4, 7},
};

int[][] group3 = {
    // group of worker 8-11
    {10, 11},
    {9, 11},
    {9, 10},
    {8, 10},
    {8, 11},
};

C#

int[,] group1 = {
    // group of worker 0-3
    { 2, 3 }, { 1, 3 }, { 1, 2 }, { 0, 1 }, { 0, 2 },
};

int[,] group2 = {
    // group of worker 4-7
    { 6, 7 }, { 5, 7 }, { 5, 6 }, { 4, 5 }, { 4, 7 },
};

int[,] group3 = {
    // group of worker 8-11
    { 10, 11 }, { 9, 11 }, { 9, 10 }, { 8, 10 }, { 8, 11 },
};

Dichiara il risolutore

Il codice seguente crea il risolutore.

Python

# Create the mip solver with the SCIP backend.
solver = pywraplp.Solver.CreateSolver("SCIP")
if not solver:
    return

C++

// Create the mip solver with the SCIP backend.
std::unique_ptr<MPSolver> solver(MPSolver::CreateSolver("SCIP"));
if (!solver) {
  LOG(WARNING) << "SCIP solver unavailable.";
  return;
}

Java

// Create the linear solver with the SCIP backend.
MPSolver solver = MPSolver.createSolver("SCIP");
if (solver == null) {
  System.out.println("Could not create solver SCIP");
  return;
}

C#

Solver solver = Solver.CreateSolver("SCIP");
if (solver is null)
{
    return;
}

Crea le variabili

Il codice seguente crea un array di variabili per il problema.

Python

# x[worker, task] is an array of 0-1 variables, which will be 1
# if the worker is assigned to the task.
x = {}
for worker in range(num_workers):
    for task in range(num_tasks):
        x[worker, task] = solver.BoolVar(f"x[{worker},{task}]")

C++

// x[i][j] is an array of 0-1 variables, which will be 1
// if worker i is assigned to task j.
std::vector<std::vector<const MPVariable*>> x(
    num_workers, std::vector<const MPVariable*>(num_tasks));
for (int worker : all_workers) {
  for (int task : all_tasks) {
    x[worker][task] =
        solver->MakeBoolVar(absl::StrFormat("x[%d,%d]", worker, task));
  }
}

Java

// x[i][j] is an array of 0-1 variables, which will be 1
// if worker i is assigned to task j.
MPVariable[][] x = new MPVariable[numWorkers][numTasks];
for (int worker : allWorkers) {
  for (int task : allTasks) {
    x[worker][task] = solver.makeBoolVar("x[" + worker + "," + task + "]");
  }
}

C#

// x[i, j] is an array of 0-1 variables, which will be 1
// if worker i is assigned to task j.
Variable[,] x = new Variable[numWorkers, numTasks];
foreach (int worker in allWorkers)
{
    foreach (int task in allTasks)
    {
        x[worker, task] = solver.MakeBoolVar($"x[{worker},{task}]");
    }
}

Aggiungi i vincoli

Il codice seguente crea i vincoli per il programma.

Python

# The total size of the tasks each worker takes on is at most total_size_max.
for worker in range(num_workers):
    solver.Add(solver.Sum([x[worker, task] for task in range(num_tasks)]) <= 1)

# Each task is assigned to exactly one worker.
for task in range(num_tasks):
    solver.Add(solver.Sum([x[worker, task] for worker in range(num_workers)]) == 1)

C++

// Each worker is assigned to at most one task.
for (int worker : all_workers) {
  LinearExpr worker_sum;
  for (int task : all_tasks) {
    worker_sum += x[worker][task];
  }
  solver->MakeRowConstraint(worker_sum <= 1.0);
}
// Each task is assigned to exactly one worker.
for (int task : all_tasks) {
  LinearExpr task_sum;
  for (int worker : all_workers) {
    task_sum += x[worker][task];
  }
  solver->MakeRowConstraint(task_sum == 1.0);
}

Java

// Each worker is assigned to at most one task.
for (int worker : allWorkers) {
  MPConstraint constraint = solver.makeConstraint(0, 1, "");
  for (int task : allTasks) {
    constraint.setCoefficient(x[worker][task], 1);
  }
}
// Each task is assigned to exactly one worker.
for (int task : allTasks) {
  MPConstraint constraint = solver.makeConstraint(1, 1, "");
  for (int worker : allWorkers) {
    constraint.setCoefficient(x[worker][task], 1);
  }
}

C#

// Each worker is assigned to at most one task.
foreach (int worker in allWorkers)
{
    Constraint constraint = solver.MakeConstraint(0, 1, "");
    foreach (int task in allTasks)
    {
        constraint.SetCoefficient(x[worker, task], 1);
    }
}
// Each task is assigned to exactly one worker.
foreach (int task in allTasks)
{
    Constraint constraint = solver.MakeConstraint(1, 1, "");
    foreach (int worker in allWorkers)
    {
        constraint.SetCoefficient(x[worker, task], 1);
    }
}

Crea l'obiettivo

Il codice seguente crea la funzione obiettivo.

Python

objective_terms = []
for worker in range(num_workers):
    for task in range(num_tasks):
        objective_terms.append(costs[worker][task] * x[worker, task])
solver.Minimize(solver.Sum(objective_terms))

C++

MPObjective* const objective = solver->MutableObjective();
for (int worker : all_workers) {
  for (int task : all_tasks) {
    objective->SetCoefficient(x[worker][task], costs[worker][task]);
  }
}
objective->SetMinimization();

Java

MPObjective objective = solver.objective();
for (int worker : allWorkers) {
  for (int task : allTasks) {
    objective.setCoefficient(x[worker][task], costs[worker][task]);
  }
}
objective.setMinimization();

C#

Objective objective = solver.Objective();
foreach (int worker in allWorkers)
{
    foreach (int task in allTasks)
    {
        objective.SetCoefficient(x[worker, task], costs[worker, task]);
    }
}
objective.SetMinimization();

Richiama il risolutore

Il codice seguente richiama il risolutore e visualizza i risultati.

Python

print(f"Solving with {solver.SolverVersion()}")
status = solver.Solve()

C++

const MPSolver::ResultStatus result_status = solver->Solve();

Java

MPSolver.ResultStatus resultStatus = solver.solve();

C#

Solver.ResultStatus resultStatus = solver.Solve();

Visualizza i risultati

Ora possiamo stampare la soluzione.

Python

if status == pywraplp.Solver.OPTIMAL or status == pywraplp.Solver.FEASIBLE:
    print(f"Total cost = {solver.Objective().Value()}\n")
    for worker in range(num_workers):
        for task in range(num_tasks):
            if x[worker, task].solution_value() > 0.5:
                print(
                    f"Worker {worker} assigned to task {task}."
                    + f" Cost: {costs[worker][task]}"
                )
else:
    print("No solution found.")

C++

// Check that the problem has a feasible solution.
if (result_status != MPSolver::OPTIMAL &&
    result_status != MPSolver::FEASIBLE) {
  LOG(FATAL) << "No solution found.";
}
LOG(INFO) << "Total cost = " << objective->Value() << "\n\n";
for (int worker : all_workers) {
  for (int task : all_tasks) {
    // Test if x[i][j] is 0 or 1 (with tolerance for floating point
    // arithmetic).
    if (x[worker][task]->solution_value() > 0.5) {
      LOG(INFO) << "Worker " << worker << " assigned to task " << task
                << ".  Cost: " << costs[worker][task];
    }
  }
}

Java

// Check that the problem has a feasible solution.
if (resultStatus == MPSolver.ResultStatus.OPTIMAL
    || resultStatus == MPSolver.ResultStatus.FEASIBLE) {
  System.out.println("Total cost: " + objective.value() + "\n");
  for (int worker : allWorkers) {
    for (int task : allTasks) {
      // Test if x[i][j] is 0 or 1 (with tolerance for floating point
      // arithmetic).
      if (x[worker][task].solutionValue() > 0.5) {
        System.out.println("Worker " + worker + " assigned to task " + task
            + ".  Cost: " + costs[worker][task]);
      }
    }
  }
} else {
  System.err.println("No solution found.");
}

C#

// Check that the problem has a feasible solution.
if (resultStatus == Solver.ResultStatus.OPTIMAL || resultStatus == Solver.ResultStatus.FEASIBLE)
{
    Console.WriteLine($"Total cost: {solver.Objective().Value()}\n");
    foreach (int worker in allWorkers)
    {
        foreach (int task in allTasks)
        {
            // Test if x[i, j] is 0 or 1 (with tolerance for floating point
            // arithmetic).
            if (x[worker, task].SolutionValue() > 0.5)
            {
                Console.WriteLine($"Worker {worker} assigned to task {task}. Cost: {costs[worker, task]}");
            }
        }
    }
}
else
{
    Console.WriteLine("No solution found.");
}

Ecco l'output del programma:

Minimum cost =  239.0

Worker 0  assigned to task 4   Cost =  50
Worker 1  assigned to task 2   Cost =  55
Worker 5  assigned to task 5   Cost =  31
Worker 6  assigned to task 3   Cost =  41
Worker 10  assigned to task 0   Cost =  17
Worker 11  assigned to task 1   Cost =  45

Time =  0.3281 seconds

L'intero programma

Ecco tutto il programma.

Python

"""Solve assignment problem for given group of workers."""
from ortools.linear_solver import pywraplp


def main():
    # Data
    costs = [
        [90, 76, 75, 70, 50, 74],
        [35, 85, 55, 65, 48, 101],
        [125, 95, 90, 105, 59, 120],
        [45, 110, 95, 115, 104, 83],
        [60, 105, 80, 75, 59, 62],
        [45, 65, 110, 95, 47, 31],
        [38, 51, 107, 41, 69, 99],
        [47, 85, 57, 71, 92, 77],
        [39, 63, 97, 49, 118, 56],
        [47, 101, 71, 60, 88, 109],
        [17, 39, 103, 64, 61, 92],
        [101, 45, 83, 59, 92, 27],
    ]
    num_workers = len(costs)
    num_tasks = len(costs[0])

    # Allowed groups of workers:
    group1 = [  # Subgroups of workers 0 - 3
        [2, 3],
        [1, 3],
        [1, 2],
        [0, 1],
        [0, 2],
    ]

    group2 = [  # Subgroups of workers 4 - 7
        [6, 7],
        [5, 7],
        [5, 6],
        [4, 5],
        [4, 7],
    ]

    group3 = [  # Subgroups of workers 8 - 11
        [10, 11],
        [9, 11],
        [9, 10],
        [8, 10],
        [8, 11],
    ]

    # Solver.
    # Create the mip solver with the SCIP backend.
    solver = pywraplp.Solver.CreateSolver("SCIP")
    if not solver:
        return

    # Variables
    # x[worker, task] is an array of 0-1 variables, which will be 1
    # if the worker is assigned to the task.
    x = {}
    for worker in range(num_workers):
        for task in range(num_tasks):
            x[worker, task] = solver.BoolVar(f"x[{worker},{task}]")

    # Constraints
    # The total size of the tasks each worker takes on is at most total_size_max.
    for worker in range(num_workers):
        solver.Add(solver.Sum([x[worker, task] for task in range(num_tasks)]) <= 1)

    # Each task is assigned to exactly one worker.
    for task in range(num_tasks):
        solver.Add(solver.Sum([x[worker, task] for worker in range(num_workers)]) == 1)

    # Create variables for each worker, indicating whether they work on some task.
    work = {}
    for worker in range(num_workers):
        work[worker] = solver.BoolVar(f"work[{worker}]")

    for worker in range(num_workers):
        solver.Add(
            work[worker] == solver.Sum([x[worker, task] for task in range(num_tasks)])
        )

    # Group1
    constraint_g1 = solver.Constraint(1, 1)
    for index, _ in enumerate(group1):
        # a*b can be transformed into 0 <= a + b - 2*p <= 1 with p in [0,1]
        # p is True if a AND b, False otherwise
        constraint = solver.Constraint(0, 1)
        constraint.SetCoefficient(work[group1[index][0]], 1)
        constraint.SetCoefficient(work[group1[index][1]], 1)
        p = solver.BoolVar(f"g1_p{index}")
        constraint.SetCoefficient(p, -2)

        constraint_g1.SetCoefficient(p, 1)

    # Group2
    constraint_g2 = solver.Constraint(1, 1)
    for index, _ in enumerate(group2):
        # a*b can be transformed into 0 <= a + b - 2*p <= 1 with p in [0,1]
        # p is True if a AND b, False otherwise
        constraint = solver.Constraint(0, 1)
        constraint.SetCoefficient(work[group2[index][0]], 1)
        constraint.SetCoefficient(work[group2[index][1]], 1)
        p = solver.BoolVar(f"g2_p{index}")
        constraint.SetCoefficient(p, -2)

        constraint_g2.SetCoefficient(p, 1)

    # Group3
    constraint_g3 = solver.Constraint(1, 1)
    for index, _ in enumerate(group3):
        # a*b can be transformed into 0 <= a + b - 2*p <= 1 with p in [0,1]
        # p is True if a AND b, False otherwise
        constraint = solver.Constraint(0, 1)
        constraint.SetCoefficient(work[group3[index][0]], 1)
        constraint.SetCoefficient(work[group3[index][1]], 1)
        p = solver.BoolVar(f"g3_p{index}")
        constraint.SetCoefficient(p, -2)

        constraint_g3.SetCoefficient(p, 1)

    # Objective
    objective_terms = []
    for worker in range(num_workers):
        for task in range(num_tasks):
            objective_terms.append(costs[worker][task] * x[worker, task])
    solver.Minimize(solver.Sum(objective_terms))

    # Solve
    print(f"Solving with {solver.SolverVersion()}")
    status = solver.Solve()

    # Print solution.
    if status == pywraplp.Solver.OPTIMAL or status == pywraplp.Solver.FEASIBLE:
        print(f"Total cost = {solver.Objective().Value()}\n")
        for worker in range(num_workers):
            for task in range(num_tasks):
                if x[worker, task].solution_value() > 0.5:
                    print(
                        f"Worker {worker} assigned to task {task}."
                        + f" Cost: {costs[worker][task]}"
                    )
    else:
        print("No solution found.")


if __name__ == "__main__":
    main()

C++

// Solve a simple assignment problem.
#include <cstdint>
#include <memory>
#include <numeric>
#include <utility>
#include <vector>

#include "absl/strings/str_format.h"
#include "ortools/base/logging.h"
#include "ortools/linear_solver/linear_solver.h"

namespace operations_research {
void AssignmentTeamsMip() {
  // Data
  const std::vector<std::vector<int64_t>> costs = {{
      {{90, 76, 75, 70, 50, 74}},
      {{35, 85, 55, 65, 48, 101}},
      {{125, 95, 90, 105, 59, 120}},
      {{45, 110, 95, 115, 104, 83}},
      {{60, 105, 80, 75, 59, 62}},
      {{45, 65, 110, 95, 47, 31}},
      {{38, 51, 107, 41, 69, 99}},
      {{47, 85, 57, 71, 92, 77}},
      {{39, 63, 97, 49, 118, 56}},
      {{47, 101, 71, 60, 88, 109}},
      {{17, 39, 103, 64, 61, 92}},
      {{101, 45, 83, 59, 92, 27}},
  }};
  const int num_workers = costs.size();
  std::vector<int> all_workers(num_workers);
  std::iota(all_workers.begin(), all_workers.end(), 0);

  const int num_tasks = costs[0].size();
  std::vector<int> all_tasks(num_tasks);
  std::iota(all_tasks.begin(), all_tasks.end(), 0);

  // Allowed groups of workers:
  using WorkerIndex = int;
  using Binome = std::pair<WorkerIndex, WorkerIndex>;
  using AllowedBinomes = std::vector<Binome>;
  const AllowedBinomes group1 = {{
      // group of worker 0-3
      {2, 3},
      {1, 3},
      {1, 2},
      {0, 1},
      {0, 2},
  }};

  const AllowedBinomes group2 = {{
      // group of worker 4-7
      {6, 7},
      {5, 7},
      {5, 6},
      {4, 5},
      {4, 7},
  }};

  const AllowedBinomes group3 = {{
      // group of worker 8-11
      {10, 11},
      {9, 11},
      {9, 10},
      {8, 10},
      {8, 11},
  }};

  // Solver
  // Create the mip solver with the SCIP backend.
  std::unique_ptr<MPSolver> solver(MPSolver::CreateSolver("SCIP"));
  if (!solver) {
    LOG(WARNING) << "SCIP solver unavailable.";
    return;
  }

  // Variables
  // x[i][j] is an array of 0-1 variables, which will be 1
  // if worker i is assigned to task j.
  std::vector<std::vector<const MPVariable*>> x(
      num_workers, std::vector<const MPVariable*>(num_tasks));
  for (int worker : all_workers) {
    for (int task : all_tasks) {
      x[worker][task] =
          solver->MakeBoolVar(absl::StrFormat("x[%d,%d]", worker, task));
    }
  }

  // Constraints
  // Each worker is assigned to at most one task.
  for (int worker : all_workers) {
    LinearExpr worker_sum;
    for (int task : all_tasks) {
      worker_sum += x[worker][task];
    }
    solver->MakeRowConstraint(worker_sum <= 1.0);
  }
  // Each task is assigned to exactly one worker.
  for (int task : all_tasks) {
    LinearExpr task_sum;
    for (int worker : all_workers) {
      task_sum += x[worker][task];
    }
    solver->MakeRowConstraint(task_sum == 1.0);
  }

  // Create variables for each worker, indicating whether they work on some
  // task.
  std::vector<const MPVariable*> work(num_workers);
  for (int worker : all_workers) {
    work[worker] = solver->MakeBoolVar(absl::StrFormat("work[%d]", worker));
  }

  for (int worker : all_workers) {
    LinearExpr task_sum;
    for (int task : all_tasks) {
      task_sum += x[worker][task];
    }
    solver->MakeRowConstraint(work[worker] == task_sum);
  }

  // Group1
  {
    MPConstraint* g1 = solver->MakeRowConstraint(1, 1);
    for (int i = 0; i < group1.size(); ++i) {
      // a*b can be transformed into 0 <= a + b - 2*p <= 1 with p in [0,1]
      // p is true if a AND b, false otherwise
      MPConstraint* tmp = solver->MakeRowConstraint(0, 1);
      tmp->SetCoefficient(work[group1[i].first], 1);
      tmp->SetCoefficient(work[group1[i].second], 1);
      MPVariable* p = solver->MakeBoolVar(absl::StrFormat("g1_p%d", i));
      tmp->SetCoefficient(p, -2);

      g1->SetCoefficient(p, 1);
    }
  }
  // Group2
  {
    MPConstraint* g2 = solver->MakeRowConstraint(1, 1);
    for (int i = 0; i < group2.size(); ++i) {
      // a*b can be transformed into 0 <= a + b - 2*p <= 1 with p in [0,1]
      // p is true if a AND b, false otherwise
      MPConstraint* tmp = solver->MakeRowConstraint(0, 1);
      tmp->SetCoefficient(work[group2[i].first], 1);
      tmp->SetCoefficient(work[group2[i].second], 1);
      MPVariable* p = solver->MakeBoolVar(absl::StrFormat("g2_p%d", i));
      tmp->SetCoefficient(p, -2);

      g2->SetCoefficient(p, 1);
    }
  }
  // Group3
  {
    MPConstraint* g3 = solver->MakeRowConstraint(1, 1);
    for (int i = 0; i < group3.size(); ++i) {
      // a*b can be transformed into 0 <= a + b - 2*p <= 1 with p in [0,1]
      // p is true if a AND b, false otherwise
      MPConstraint* tmp = solver->MakeRowConstraint(0, 1);
      tmp->SetCoefficient(work[group3[i].first], 1);
      tmp->SetCoefficient(work[group3[i].second], 1);
      MPVariable* p = solver->MakeBoolVar(absl::StrFormat("g3_p%d", i));
      tmp->SetCoefficient(p, -2);

      g3->SetCoefficient(p, 1);
    }
  }

  // Objective.
  MPObjective* const objective = solver->MutableObjective();
  for (int worker : all_workers) {
    for (int task : all_tasks) {
      objective->SetCoefficient(x[worker][task], costs[worker][task]);
    }
  }
  objective->SetMinimization();

  // Solve
  const MPSolver::ResultStatus result_status = solver->Solve();

  // Print solution.
  // Check that the problem has a feasible solution.
  if (result_status != MPSolver::OPTIMAL &&
      result_status != MPSolver::FEASIBLE) {
    LOG(FATAL) << "No solution found.";
  }
  LOG(INFO) << "Total cost = " << objective->Value() << "\n\n";
  for (int worker : all_workers) {
    for (int task : all_tasks) {
      // Test if x[i][j] is 0 or 1 (with tolerance for floating point
      // arithmetic).
      if (x[worker][task]->solution_value() > 0.5) {
        LOG(INFO) << "Worker " << worker << " assigned to task " << task
                  << ".  Cost: " << costs[worker][task];
      }
    }
  }
}
}  // namespace operations_research

int main(int argc, char** argv) {
  operations_research::AssignmentTeamsMip();
  return EXIT_SUCCESS;
}

Java

package com.google.ortools.linearsolver.samples;
import com.google.ortools.Loader;
import com.google.ortools.linearsolver.MPConstraint;
import com.google.ortools.linearsolver.MPObjective;
import com.google.ortools.linearsolver.MPSolver;
import com.google.ortools.linearsolver.MPVariable;
import java.util.stream.IntStream;

/** MIP example that solves an assignment problem. */
public class AssignmentGroupsMip {
  public static void main(String[] args) {
    Loader.loadNativeLibraries();
    // Data
    double[][] costs = {
        {90, 76, 75, 70, 50, 74},
        {35, 85, 55, 65, 48, 101},
        {125, 95, 90, 105, 59, 120},
        {45, 110, 95, 115, 104, 83},
        {60, 105, 80, 75, 59, 62},
        {45, 65, 110, 95, 47, 31},
        {38, 51, 107, 41, 69, 99},
        {47, 85, 57, 71, 92, 77},
        {39, 63, 97, 49, 118, 56},
        {47, 101, 71, 60, 88, 109},
        {17, 39, 103, 64, 61, 92},
        {101, 45, 83, 59, 92, 27},
    };
    int numWorkers = costs.length;
    int numTasks = costs[0].length;

    final int[] allWorkers = IntStream.range(0, numWorkers).toArray();
    final int[] allTasks = IntStream.range(0, numTasks).toArray();

    // Allowed groups of workers:
    int[][] group1 = {
        // group of worker 0-3
        {2, 3},
        {1, 3},
        {1, 2},
        {0, 1},
        {0, 2},
    };

    int[][] group2 = {
        // group of worker 4-7
        {6, 7},
        {5, 7},
        {5, 6},
        {4, 5},
        {4, 7},
    };

    int[][] group3 = {
        // group of worker 8-11
        {10, 11},
        {9, 11},
        {9, 10},
        {8, 10},
        {8, 11},
    };

    // Solver
    // Create the linear solver with the SCIP backend.
    MPSolver solver = MPSolver.createSolver("SCIP");
    if (solver == null) {
      System.out.println("Could not create solver SCIP");
      return;
    }

    // Variables
    // x[i][j] is an array of 0-1 variables, which will be 1
    // if worker i is assigned to task j.
    MPVariable[][] x = new MPVariable[numWorkers][numTasks];
    for (int worker : allWorkers) {
      for (int task : allTasks) {
        x[worker][task] = solver.makeBoolVar("x[" + worker + "," + task + "]");
      }
    }

    // Constraints
    // Each worker is assigned to at most one task.
    for (int worker : allWorkers) {
      MPConstraint constraint = solver.makeConstraint(0, 1, "");
      for (int task : allTasks) {
        constraint.setCoefficient(x[worker][task], 1);
      }
    }
    // Each task is assigned to exactly one worker.
    for (int task : allTasks) {
      MPConstraint constraint = solver.makeConstraint(1, 1, "");
      for (int worker : allWorkers) {
        constraint.setCoefficient(x[worker][task], 1);
      }
    }

    // Create variables for each worker, indicating whether they work on some task.
    MPVariable[] work = new MPVariable[numWorkers];
    for (int worker : allWorkers) {
      work[worker] = solver.makeBoolVar("work[" + worker + "]");
    }

    for (int worker : allWorkers) {
      // MPVariable[] vars = new MPVariable[numTasks];
      MPConstraint constraint = solver.makeConstraint(0, 0, "");
      for (int task : allTasks) {
        // vars[task] = x[worker][task];
        constraint.setCoefficient(x[worker][task], 1);
      }
      // solver.addEquality(work[worker], LinearExpr.sum(vars));
      constraint.setCoefficient(work[worker], -1);
    }

    // Group1
    MPConstraint constraintG1 = solver.makeConstraint(1, 1, "");
    for (int i = 0; i < group1.length; ++i) {
      // a*b can be transformed into 0 <= a + b - 2*p <= 1 with p in [0,1]
      // p is True if a AND b, False otherwise
      MPConstraint constraint = solver.makeConstraint(0, 1, "");
      constraint.setCoefficient(work[group1[i][0]], 1);
      constraint.setCoefficient(work[group1[i][1]], 1);
      MPVariable p = solver.makeBoolVar("g1_p" + i);
      constraint.setCoefficient(p, -2);

      constraintG1.setCoefficient(p, 1);
    }
    // Group2
    MPConstraint constraintG2 = solver.makeConstraint(1, 1, "");
    for (int i = 0; i < group2.length; ++i) {
      // a*b can be transformed into 0 <= a + b - 2*p <= 1 with p in [0,1]
      // p is True if a AND b, False otherwise
      MPConstraint constraint = solver.makeConstraint(0, 1, "");
      constraint.setCoefficient(work[group2[i][0]], 1);
      constraint.setCoefficient(work[group2[i][1]], 1);
      MPVariable p = solver.makeBoolVar("g2_p" + i);
      constraint.setCoefficient(p, -2);

      constraintG2.setCoefficient(p, 1);
    }
    // Group3
    MPConstraint constraintG3 = solver.makeConstraint(1, 1, "");
    for (int i = 0; i < group3.length; ++i) {
      // a*b can be transformed into 0 <= a + b - 2*p <= 1 with p in [0,1]
      // p is True if a AND b, False otherwise
      MPConstraint constraint = solver.makeConstraint(0, 1, "");
      constraint.setCoefficient(work[group3[i][0]], 1);
      constraint.setCoefficient(work[group3[i][1]], 1);
      MPVariable p = solver.makeBoolVar("g3_p" + i);
      constraint.setCoefficient(p, -2);

      constraintG3.setCoefficient(p, 1);
    }

    // Objective
    MPObjective objective = solver.objective();
    for (int worker : allWorkers) {
      for (int task : allTasks) {
        objective.setCoefficient(x[worker][task], costs[worker][task]);
      }
    }
    objective.setMinimization();

    // Solve
    MPSolver.ResultStatus resultStatus = solver.solve();

    // Print solution.
    // Check that the problem has a feasible solution.
    if (resultStatus == MPSolver.ResultStatus.OPTIMAL
        || resultStatus == MPSolver.ResultStatus.FEASIBLE) {
      System.out.println("Total cost: " + objective.value() + "\n");
      for (int worker : allWorkers) {
        for (int task : allTasks) {
          // Test if x[i][j] is 0 or 1 (with tolerance for floating point
          // arithmetic).
          if (x[worker][task].solutionValue() > 0.5) {
            System.out.println("Worker " + worker + " assigned to task " + task
                + ".  Cost: " + costs[worker][task]);
          }
        }
      }
    } else {
      System.err.println("No solution found.");
    }
  }

  private AssignmentGroupsMip() {}
}

C#

using System;
using System.Collections.Generic;
using System.Linq;
using Google.OrTools.LinearSolver;

public class AssignmentGroupsMip
{
    static void Main()
    {
        // Data.
        int[,] costs = {
            { 90, 76, 75, 70, 50, 74 },    { 35, 85, 55, 65, 48, 101 }, { 125, 95, 90, 105, 59, 120 },
            { 45, 110, 95, 115, 104, 83 }, { 60, 105, 80, 75, 59, 62 }, { 45, 65, 110, 95, 47, 31 },
            { 38, 51, 107, 41, 69, 99 },   { 47, 85, 57, 71, 92, 77 },  { 39, 63, 97, 49, 118, 56 },
            { 47, 101, 71, 60, 88, 109 },  { 17, 39, 103, 64, 61, 92 }, { 101, 45, 83, 59, 92, 27 },
        };
        int numWorkers = costs.GetLength(0);
        int numTasks = costs.GetLength(1);

        int[] allWorkers = Enumerable.Range(0, numWorkers).ToArray();
        int[] allTasks = Enumerable.Range(0, numTasks).ToArray();

        // Allowed groups of workers:
        int[,] group1 = {
            // group of worker 0-3
            { 2, 3 }, { 1, 3 }, { 1, 2 }, { 0, 1 }, { 0, 2 },
        };

        int[,] group2 = {
            // group of worker 4-7
            { 6, 7 }, { 5, 7 }, { 5, 6 }, { 4, 5 }, { 4, 7 },
        };

        int[,] group3 = {
            // group of worker 8-11
            { 10, 11 }, { 9, 11 }, { 9, 10 }, { 8, 10 }, { 8, 11 },
        };

        // Solver.
        Solver solver = Solver.CreateSolver("SCIP");
        if (solver is null)
        {
            return;
        }

        // Variables.
        // x[i, j] is an array of 0-1 variables, which will be 1
        // if worker i is assigned to task j.
        Variable[,] x = new Variable[numWorkers, numTasks];
        foreach (int worker in allWorkers)
        {
            foreach (int task in allTasks)
            {
                x[worker, task] = solver.MakeBoolVar($"x[{worker},{task}]");
            }
        }

        // Constraints
        // Each worker is assigned to at most one task.
        foreach (int worker in allWorkers)
        {
            Constraint constraint = solver.MakeConstraint(0, 1, "");
            foreach (int task in allTasks)
            {
                constraint.SetCoefficient(x[worker, task], 1);
            }
        }
        // Each task is assigned to exactly one worker.
        foreach (int task in allTasks)
        {
            Constraint constraint = solver.MakeConstraint(1, 1, "");
            foreach (int worker in allWorkers)
            {
                constraint.SetCoefficient(x[worker, task], 1);
            }
        }

        // Create variables for each worker, indicating whether they work on some task.
        Variable[] work = new Variable[numWorkers];
        foreach (int worker in allWorkers)
        {
            work[worker] = solver.MakeBoolVar($"work[{worker}]");
        }

        foreach (int worker in allWorkers)
        {
            Variable[] vars = new Variable[numTasks];
            foreach (int task in allTasks)
            {
                vars[task] = x[worker, task];
            }
            solver.Add(work[worker] == LinearExprArrayHelper.Sum(vars));
        }

        // Group1
        Constraint constraint_g1 = solver.MakeConstraint(1, 1, "");
        for (int i = 0; i < group1.GetLength(0); ++i)
        {
            // a*b can be transformed into 0 <= a + b - 2*p <= 1 with p in [0,1]
            // p is True if a AND b, False otherwise
            Constraint constraint = solver.MakeConstraint(0, 1, "");
            constraint.SetCoefficient(work[group1[i, 0]], 1);
            constraint.SetCoefficient(work[group1[i, 1]], 1);
            Variable p = solver.MakeBoolVar($"g1_p{i}");
            constraint.SetCoefficient(p, -2);

            constraint_g1.SetCoefficient(p, 1);
        }
        // Group2
        Constraint constraint_g2 = solver.MakeConstraint(1, 1, "");
        for (int i = 0; i < group2.GetLength(0); ++i)
        {
            // a*b can be transformed into 0 <= a + b - 2*p <= 1 with p in [0,1]
            // p is True if a AND b, False otherwise
            Constraint constraint = solver.MakeConstraint(0, 1, "");
            constraint.SetCoefficient(work[group2[i, 0]], 1);
            constraint.SetCoefficient(work[group2[i, 1]], 1);
            Variable p = solver.MakeBoolVar($"g2_p{i}");
            constraint.SetCoefficient(p, -2);

            constraint_g2.SetCoefficient(p, 1);
        }
        // Group3
        Constraint constraint_g3 = solver.MakeConstraint(1, 1, "");
        for (int i = 0; i < group3.GetLength(0); ++i)
        {
            // a*b can be transformed into 0 <= a + b - 2*p <= 1 with p in [0,1]
            // p is True if a AND b, False otherwise
            Constraint constraint = solver.MakeConstraint(0, 1, "");
            constraint.SetCoefficient(work[group3[i, 0]], 1);
            constraint.SetCoefficient(work[group3[i, 1]], 1);
            Variable p = solver.MakeBoolVar($"g3_p{i}");
            constraint.SetCoefficient(p, -2);

            constraint_g3.SetCoefficient(p, 1);
        }

        // Objective
        Objective objective = solver.Objective();
        foreach (int worker in allWorkers)
        {
            foreach (int task in allTasks)
            {
                objective.SetCoefficient(x[worker, task], costs[worker, task]);
            }
        }
        objective.SetMinimization();

        // Solve
        Solver.ResultStatus resultStatus = solver.Solve();

        // Print solution.
        // Check that the problem has a feasible solution.
        if (resultStatus == Solver.ResultStatus.OPTIMAL || resultStatus == Solver.ResultStatus.FEASIBLE)
        {
            Console.WriteLine($"Total cost: {solver.Objective().Value()}\n");
            foreach (int worker in allWorkers)
            {
                foreach (int task in allTasks)
                {
                    // Test if x[i, j] is 0 or 1 (with tolerance for floating point
                    // arithmetic).
                    if (x[worker, task].SolutionValue() > 0.5)
                    {
                        Console.WriteLine($"Worker {worker} assigned to task {task}. Cost: {costs[worker, task]}");
                    }
                }
            }
        }
        else
        {
            Console.WriteLine("No solution found.");
        }
    }
}

Tempi delle soluzioni

I tempi di soluzione per i due risolutori sono i seguenti:

  • CP-SAT: 0,0113 secondi
  • MIP: 0,3281 secondi

CP-SAT è molto più veloce di MIP per questo problema.