解決作業問題

本節提供的範例說明如何使用 MIP 解析器和 CP-SAT 解析器解決作業問題。

範例

在這個範例中,有五個工作站 (編號 0 到 4) 和四個工作 (數字 0 到 3)。請注意,工作站數量比總覽 中的範例還多。

將工作站指派給工作的費用如下表所示。

工作站 工作 0 任務 1 任務 2 任務 3
0 90 80 75 70
1 35 85 55 65
2 125 95 90 95
3 45 110 95 115
4 50 100 90 100

問題是將每個工作站指派給最多一項工作,但不必有兩個工作站執行相同的工作,同時將總費用降到最低。由於工作站數量超過工作數量,因此系統不會指派一個工作。

MIP 解決方案

下列各節說明如何使用 MP 解答 r 包裝函式解決問題。

匯入程式庫

以下程式碼會匯入必要程式庫。

Python

from ortools.linear_solver import pywraplp

C++

#include <memory>
#include <vector>

#include "ortools/base/logging.h"
#include "ortools/linear_solver/linear_solver.h"

Java

import com.google.ortools.Loader;
import com.google.ortools.linearsolver.MPConstraint;
import com.google.ortools.linearsolver.MPObjective;
import com.google.ortools.linearsolver.MPSolver;
import com.google.ortools.linearsolver.MPVariable;

C#

using System;
using Google.OrTools.LinearSolver;

建立資料

下列程式碼會建立問題資料。

Python

costs = [
    [90, 80, 75, 70],
    [35, 85, 55, 65],
    [125, 95, 90, 95],
    [45, 110, 95, 115],
    [50, 100, 90, 100],
]
num_workers = len(costs)
num_tasks = len(costs[0])

C++

const std::vector<std::vector<double>> costs{
    {90, 80, 75, 70},   {35, 85, 55, 65},   {125, 95, 90, 95},
    {45, 110, 95, 115}, {50, 100, 90, 100},
};
const int num_workers = costs.size();
const int num_tasks = costs[0].size();

Java

double[][] costs = {
    {90, 80, 75, 70},
    {35, 85, 55, 65},
    {125, 95, 90, 95},
    {45, 110, 95, 115},
    {50, 100, 90, 100},
};
int numWorkers = costs.length;
int numTasks = costs[0].length;

C#

int[,] costs = {
    { 90, 80, 75, 70 }, { 35, 85, 55, 65 }, { 125, 95, 90, 95 }, { 45, 110, 95, 115 }, { 50, 100, 90, 100 },
};
int numWorkers = costs.GetLength(0);
int numTasks = costs.GetLength(1);

costs 陣列會對應至將工作站指派給工作的費用,如上所示。

宣告 MIP 解析器

下列程式碼會宣告 MIP 解析器。

Python

# Create the mip solver with the SCIP backend.
solver = pywraplp.Solver.CreateSolver("SCIP")

if not solver:
    return

C++

// Create the mip solver with the SCIP backend.
std::unique_ptr<MPSolver> solver(MPSolver::CreateSolver("SCIP"));
if (!solver) {
  LOG(WARNING) << "SCIP solver unavailable.";
  return;
}

Java

// Create the linear solver with the SCIP backend.
MPSolver solver = MPSolver.createSolver("SCIP");
if (solver == null) {
  System.out.println("Could not create solver SCIP");
  return;
}

C#

Solver solver = Solver.CreateSolver("SCIP");
if (solver is null)
{
    return;
}

建立變數

下列程式碼會為問題建立二進位整數變數。

Python

# x[i, j] is an array of 0-1 variables, which will be 1
# if worker i is assigned to task j.
x = {}
for i in range(num_workers):
    for j in range(num_tasks):
        x[i, j] = solver.IntVar(0, 1, "")

C++

// x[i][j] is an array of 0-1 variables, which will be 1
// if worker i is assigned to task j.
std::vector<std::vector<const MPVariable*>> x(
    num_workers, std::vector<const MPVariable*>(num_tasks));
for (int i = 0; i < num_workers; ++i) {
  for (int j = 0; j < num_tasks; ++j) {
    x[i][j] = solver->MakeIntVar(0, 1, "");
  }
}

Java

// x[i][j] is an array of 0-1 variables, which will be 1
// if worker i is assigned to task j.
MPVariable[][] x = new MPVariable[numWorkers][numTasks];
for (int i = 0; i < numWorkers; ++i) {
  for (int j = 0; j < numTasks; ++j) {
    x[i][j] = solver.makeIntVar(0, 1, "");
  }
}

C#

// x[i, j] is an array of 0-1 variables, which will be 1
// if worker i is assigned to task j.
Variable[,] x = new Variable[numWorkers, numTasks];
for (int i = 0; i < numWorkers; ++i)
{
    for (int j = 0; j < numTasks; ++j)
    {
        x[i, j] = solver.MakeIntVar(0, 1, $"worker_{i}_task_{j}");
    }
}

建立限制條件

下列程式碼會建立問題限制條件。

Python

# Each worker is assigned to at most 1 task.
for i in range(num_workers):
    solver.Add(solver.Sum([x[i, j] for j in range(num_tasks)]) <= 1)

# Each task is assigned to exactly one worker.
for j in range(num_tasks):
    solver.Add(solver.Sum([x[i, j] for i in range(num_workers)]) == 1)

C++

// Each worker is assigned to at most one task.
for (int i = 0; i < num_workers; ++i) {
  LinearExpr worker_sum;
  for (int j = 0; j < num_tasks; ++j) {
    worker_sum += x[i][j];
  }
  solver->MakeRowConstraint(worker_sum <= 1.0);
}
// Each task is assigned to exactly one worker.
for (int j = 0; j < num_tasks; ++j) {
  LinearExpr task_sum;
  for (int i = 0; i < num_workers; ++i) {
    task_sum += x[i][j];
  }
  solver->MakeRowConstraint(task_sum == 1.0);
}

Java

// Each worker is assigned to at most one task.
for (int i = 0; i < numWorkers; ++i) {
  MPConstraint constraint = solver.makeConstraint(0, 1, "");
  for (int j = 0; j < numTasks; ++j) {
    constraint.setCoefficient(x[i][j], 1);
  }
}
// Each task is assigned to exactly one worker.
for (int j = 0; j < numTasks; ++j) {
  MPConstraint constraint = solver.makeConstraint(1, 1, "");
  for (int i = 0; i < numWorkers; ++i) {
    constraint.setCoefficient(x[i][j], 1);
  }
}

C#

// Each worker is assigned to at most one task.
for (int i = 0; i < numWorkers; ++i)
{
    Constraint constraint = solver.MakeConstraint(0, 1, "");
    for (int j = 0; j < numTasks; ++j)
    {
        constraint.SetCoefficient(x[i, j], 1);
    }
}
// Each task is assigned to exactly one worker.
for (int j = 0; j < numTasks; ++j)
{
    Constraint constraint = solver.MakeConstraint(1, 1, "");
    for (int i = 0; i < numWorkers; ++i)
    {
        constraint.SetCoefficient(x[i, j], 1);
    }
}

建立目標函式

下列程式碼會建立問題的目標函式。

Python

objective_terms = []
for i in range(num_workers):
    for j in range(num_tasks):
        objective_terms.append(costs[i][j] * x[i, j])
solver.Minimize(solver.Sum(objective_terms))

C++

MPObjective* const objective = solver->MutableObjective();
for (int i = 0; i < num_workers; ++i) {
  for (int j = 0; j < num_tasks; ++j) {
    objective->SetCoefficient(x[i][j], costs[i][j]);
  }
}
objective->SetMinimization();

Java

MPObjective objective = solver.objective();
for (int i = 0; i < numWorkers; ++i) {
  for (int j = 0; j < numTasks; ++j) {
    objective.setCoefficient(x[i][j], costs[i][j]);
  }
}
objective.setMinimization();

C#

Objective objective = solver.Objective();
for (int i = 0; i < numWorkers; ++i)
{
    for (int j = 0; j < numTasks; ++j)
    {
        objective.SetCoefficient(x[i, j], costs[i, j]);
    }
}
objective.SetMinimization();

目標函式的值是解題器指派值 1 的所有變數的總費用。

叫用求解工具

下列程式碼會叫用解題工具。

Python

print(f"Solving with {solver.SolverVersion()}")
status = solver.Solve()

C++

const MPSolver::ResultStatus result_status = solver->Solve();

Java

MPSolver.ResultStatus resultStatus = solver.solve();

C#

Solver.ResultStatus resultStatus = solver.Solve();

以下程式碼可列出問題的解決方案。

Python

if status == pywraplp.Solver.OPTIMAL or status == pywraplp.Solver.FEASIBLE:
    print(f"Total cost = {solver.Objective().Value()}\n")
    for i in range(num_workers):
        for j in range(num_tasks):
            # Test if x[i,j] is 1 (with tolerance for floating point arithmetic).
            if x[i, j].solution_value() > 0.5:
                print(f"Worker {i} assigned to task {j}." + f" Cost: {costs[i][j]}")
else:
    print("No solution found.")

C++

// Check that the problem has a feasible solution.
if (result_status != MPSolver::OPTIMAL &&
    result_status != MPSolver::FEASIBLE) {
  LOG(FATAL) << "No solution found.";
}

LOG(INFO) << "Total cost = " << objective->Value() << "\n\n";

for (int i = 0; i < num_workers; ++i) {
  for (int j = 0; j < num_tasks; ++j) {
    // Test if x[i][j] is 0 or 1 (with tolerance for floating point
    // arithmetic).
    if (x[i][j]->solution_value() > 0.5) {
      LOG(INFO) << "Worker " << i << " assigned to task " << j
                << ".  Cost = " << costs[i][j];
    }
  }
}

Java

// Check that the problem has a feasible solution.
if (resultStatus == MPSolver.ResultStatus.OPTIMAL
    || resultStatus == MPSolver.ResultStatus.FEASIBLE) {
  System.out.println("Total cost: " + objective.value() + "\n");
  for (int i = 0; i < numWorkers; ++i) {
    for (int j = 0; j < numTasks; ++j) {
      // Test if x[i][j] is 0 or 1 (with tolerance for floating point
      // arithmetic).
      if (x[i][j].solutionValue() > 0.5) {
        System.out.println(
            "Worker " + i + " assigned to task " + j + ".  Cost = " + costs[i][j]);
      }
    }
  }
} else {
  System.err.println("No solution found.");
}

C#

// Check that the problem has a feasible solution.
if (resultStatus == Solver.ResultStatus.OPTIMAL || resultStatus == Solver.ResultStatus.FEASIBLE)
{
    Console.WriteLine($"Total cost: {solver.Objective().Value()}\n");
    for (int i = 0; i < numWorkers; ++i)
    {
        for (int j = 0; j < numTasks; ++j)
        {
            // Test if x[i, j] is 0 or 1 (with tolerance for floating point
            // arithmetic).
            if (x[i, j].SolutionValue() > 0.5)
            {
                Console.WriteLine($"Worker {i} assigned to task {j}. Cost: {costs[i, j]}");
            }
        }
    }
}
else
{
    Console.WriteLine("No solution found.");
}

以下是程式的輸出內容。

Total cost =  265.0

Worker 0 assigned to task 3.  Cost = 70
Worker 1 assigned to task 2.  Cost = 55
Worker 2 assigned to task 1.  Cost = 95
Worker 3 assigned to task 0.  Cost = 45

完成計畫

以下是 MIP 解決方案的完整程式。

Python

from ortools.linear_solver import pywraplp


def main():
    # Data
    costs = [
        [90, 80, 75, 70],
        [35, 85, 55, 65],
        [125, 95, 90, 95],
        [45, 110, 95, 115],
        [50, 100, 90, 100],
    ]
    num_workers = len(costs)
    num_tasks = len(costs[0])

    # Solver
    # Create the mip solver with the SCIP backend.
    solver = pywraplp.Solver.CreateSolver("SCIP")

    if not solver:
        return

    # Variables
    # x[i, j] is an array of 0-1 variables, which will be 1
    # if worker i is assigned to task j.
    x = {}
    for i in range(num_workers):
        for j in range(num_tasks):
            x[i, j] = solver.IntVar(0, 1, "")

    # Constraints
    # Each worker is assigned to at most 1 task.
    for i in range(num_workers):
        solver.Add(solver.Sum([x[i, j] for j in range(num_tasks)]) <= 1)

    # Each task is assigned to exactly one worker.
    for j in range(num_tasks):
        solver.Add(solver.Sum([x[i, j] for i in range(num_workers)]) == 1)

    # Objective
    objective_terms = []
    for i in range(num_workers):
        for j in range(num_tasks):
            objective_terms.append(costs[i][j] * x[i, j])
    solver.Minimize(solver.Sum(objective_terms))

    # Solve
    print(f"Solving with {solver.SolverVersion()}")
    status = solver.Solve()

    # Print solution.
    if status == pywraplp.Solver.OPTIMAL or status == pywraplp.Solver.FEASIBLE:
        print(f"Total cost = {solver.Objective().Value()}\n")
        for i in range(num_workers):
            for j in range(num_tasks):
                # Test if x[i,j] is 1 (with tolerance for floating point arithmetic).
                if x[i, j].solution_value() > 0.5:
                    print(f"Worker {i} assigned to task {j}." + f" Cost: {costs[i][j]}")
    else:
        print("No solution found.")


if __name__ == "__main__":
    main()

C++

#include <memory>
#include <vector>

#include "ortools/base/logging.h"
#include "ortools/linear_solver/linear_solver.h"

namespace operations_research {
void AssignmentMip() {
  // Data
  const std::vector<std::vector<double>> costs{
      {90, 80, 75, 70},   {35, 85, 55, 65},   {125, 95, 90, 95},
      {45, 110, 95, 115}, {50, 100, 90, 100},
  };
  const int num_workers = costs.size();
  const int num_tasks = costs[0].size();

  // Solver
  // Create the mip solver with the SCIP backend.
  std::unique_ptr<MPSolver> solver(MPSolver::CreateSolver("SCIP"));
  if (!solver) {
    LOG(WARNING) << "SCIP solver unavailable.";
    return;
  }

  // Variables
  // x[i][j] is an array of 0-1 variables, which will be 1
  // if worker i is assigned to task j.
  std::vector<std::vector<const MPVariable*>> x(
      num_workers, std::vector<const MPVariable*>(num_tasks));
  for (int i = 0; i < num_workers; ++i) {
    for (int j = 0; j < num_tasks; ++j) {
      x[i][j] = solver->MakeIntVar(0, 1, "");
    }
  }

  // Constraints
  // Each worker is assigned to at most one task.
  for (int i = 0; i < num_workers; ++i) {
    LinearExpr worker_sum;
    for (int j = 0; j < num_tasks; ++j) {
      worker_sum += x[i][j];
    }
    solver->MakeRowConstraint(worker_sum <= 1.0);
  }
  // Each task is assigned to exactly one worker.
  for (int j = 0; j < num_tasks; ++j) {
    LinearExpr task_sum;
    for (int i = 0; i < num_workers; ++i) {
      task_sum += x[i][j];
    }
    solver->MakeRowConstraint(task_sum == 1.0);
  }

  // Objective.
  MPObjective* const objective = solver->MutableObjective();
  for (int i = 0; i < num_workers; ++i) {
    for (int j = 0; j < num_tasks; ++j) {
      objective->SetCoefficient(x[i][j], costs[i][j]);
    }
  }
  objective->SetMinimization();

  // Solve
  const MPSolver::ResultStatus result_status = solver->Solve();

  // Print solution.
  // Check that the problem has a feasible solution.
  if (result_status != MPSolver::OPTIMAL &&
      result_status != MPSolver::FEASIBLE) {
    LOG(FATAL) << "No solution found.";
  }

  LOG(INFO) << "Total cost = " << objective->Value() << "\n\n";

  for (int i = 0; i < num_workers; ++i) {
    for (int j = 0; j < num_tasks; ++j) {
      // Test if x[i][j] is 0 or 1 (with tolerance for floating point
      // arithmetic).
      if (x[i][j]->solution_value() > 0.5) {
        LOG(INFO) << "Worker " << i << " assigned to task " << j
                  << ".  Cost = " << costs[i][j];
      }
    }
  }
}
}  // namespace operations_research

int main(int argc, char** argv) {
  operations_research::AssignmentMip();
  return EXIT_SUCCESS;
}

Java

package com.google.ortools.linearsolver.samples;
import com.google.ortools.Loader;
import com.google.ortools.linearsolver.MPConstraint;
import com.google.ortools.linearsolver.MPObjective;
import com.google.ortools.linearsolver.MPSolver;
import com.google.ortools.linearsolver.MPVariable;

/** MIP example that solves an assignment problem. */
public class AssignmentMip {
  public static void main(String[] args) {
    Loader.loadNativeLibraries();
    // Data
    double[][] costs = {
        {90, 80, 75, 70},
        {35, 85, 55, 65},
        {125, 95, 90, 95},
        {45, 110, 95, 115},
        {50, 100, 90, 100},
    };
    int numWorkers = costs.length;
    int numTasks = costs[0].length;

    // Solver
    // Create the linear solver with the SCIP backend.
    MPSolver solver = MPSolver.createSolver("SCIP");
    if (solver == null) {
      System.out.println("Could not create solver SCIP");
      return;
    }

    // Variables
    // x[i][j] is an array of 0-1 variables, which will be 1
    // if worker i is assigned to task j.
    MPVariable[][] x = new MPVariable[numWorkers][numTasks];
    for (int i = 0; i < numWorkers; ++i) {
      for (int j = 0; j < numTasks; ++j) {
        x[i][j] = solver.makeIntVar(0, 1, "");
      }
    }

    // Constraints
    // Each worker is assigned to at most one task.
    for (int i = 0; i < numWorkers; ++i) {
      MPConstraint constraint = solver.makeConstraint(0, 1, "");
      for (int j = 0; j < numTasks; ++j) {
        constraint.setCoefficient(x[i][j], 1);
      }
    }
    // Each task is assigned to exactly one worker.
    for (int j = 0; j < numTasks; ++j) {
      MPConstraint constraint = solver.makeConstraint(1, 1, "");
      for (int i = 0; i < numWorkers; ++i) {
        constraint.setCoefficient(x[i][j], 1);
      }
    }

    // Objective
    MPObjective objective = solver.objective();
    for (int i = 0; i < numWorkers; ++i) {
      for (int j = 0; j < numTasks; ++j) {
        objective.setCoefficient(x[i][j], costs[i][j]);
      }
    }
    objective.setMinimization();

    // Solve
    MPSolver.ResultStatus resultStatus = solver.solve();

    // Print solution.
    // Check that the problem has a feasible solution.
    if (resultStatus == MPSolver.ResultStatus.OPTIMAL
        || resultStatus == MPSolver.ResultStatus.FEASIBLE) {
      System.out.println("Total cost: " + objective.value() + "\n");
      for (int i = 0; i < numWorkers; ++i) {
        for (int j = 0; j < numTasks; ++j) {
          // Test if x[i][j] is 0 or 1 (with tolerance for floating point
          // arithmetic).
          if (x[i][j].solutionValue() > 0.5) {
            System.out.println(
                "Worker " + i + " assigned to task " + j + ".  Cost = " + costs[i][j]);
          }
        }
      }
    } else {
      System.err.println("No solution found.");
    }
  }

  private AssignmentMip() {}
}

C#

using System;
using Google.OrTools.LinearSolver;

public class AssignmentMip
{
    static void Main()
    {
        // Data.
        int[,] costs = {
            { 90, 80, 75, 70 }, { 35, 85, 55, 65 }, { 125, 95, 90, 95 }, { 45, 110, 95, 115 }, { 50, 100, 90, 100 },
        };
        int numWorkers = costs.GetLength(0);
        int numTasks = costs.GetLength(1);

        // Solver.
        Solver solver = Solver.CreateSolver("SCIP");
        if (solver is null)
        {
            return;
        }

        // Variables.
        // x[i, j] is an array of 0-1 variables, which will be 1
        // if worker i is assigned to task j.
        Variable[,] x = new Variable[numWorkers, numTasks];
        for (int i = 0; i < numWorkers; ++i)
        {
            for (int j = 0; j < numTasks; ++j)
            {
                x[i, j] = solver.MakeIntVar(0, 1, $"worker_{i}_task_{j}");
            }
        }

        // Constraints
        // Each worker is assigned to at most one task.
        for (int i = 0; i < numWorkers; ++i)
        {
            Constraint constraint = solver.MakeConstraint(0, 1, "");
            for (int j = 0; j < numTasks; ++j)
            {
                constraint.SetCoefficient(x[i, j], 1);
            }
        }
        // Each task is assigned to exactly one worker.
        for (int j = 0; j < numTasks; ++j)
        {
            Constraint constraint = solver.MakeConstraint(1, 1, "");
            for (int i = 0; i < numWorkers; ++i)
            {
                constraint.SetCoefficient(x[i, j], 1);
            }
        }

        // Objective
        Objective objective = solver.Objective();
        for (int i = 0; i < numWorkers; ++i)
        {
            for (int j = 0; j < numTasks; ++j)
            {
                objective.SetCoefficient(x[i, j], costs[i, j]);
            }
        }
        objective.SetMinimization();

        // Solve
        Solver.ResultStatus resultStatus = solver.Solve();

        // Print solution.
        // Check that the problem has a feasible solution.
        if (resultStatus == Solver.ResultStatus.OPTIMAL || resultStatus == Solver.ResultStatus.FEASIBLE)
        {
            Console.WriteLine($"Total cost: {solver.Objective().Value()}\n");
            for (int i = 0; i < numWorkers; ++i)
            {
                for (int j = 0; j < numTasks; ++j)
                {
                    // Test if x[i, j] is 0 or 1 (with tolerance for floating point
                    // arithmetic).
                    if (x[i, j].SolutionValue() > 0.5)
                    {
                        Console.WriteLine($"Worker {i} assigned to task {j}. Cost: {costs[i, j]}");
                    }
                }
            }
        }
        else
        {
            Console.WriteLine("No solution found.");
        }
    }
}

CP SAT 解決方案

以下各節說明如何使用 CP-SAT 解析工具解決問題。

匯入程式庫

以下程式碼會匯入必要程式庫。

Python

import io

import pandas as pd

from ortools.sat.python import cp_model

C++

#include <stdlib.h>

#include <vector>

#include "ortools/base/logging.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"

Java

import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverStatus;
import com.google.ortools.sat.LinearExpr;
import com.google.ortools.sat.LinearExprBuilder;
import com.google.ortools.sat.Literal;
import java.util.ArrayList;
import java.util.List;
import java.util.stream.IntStream;

C#

using System;
using System.Collections.Generic;
using Google.OrTools.Sat;

宣告模型

下列程式碼宣告 CP-SAT 模型。

Python

model = cp_model.CpModel()

C++

CpModelBuilder cp_model;

Java

CpModel model = new CpModel();

C#

CpModel model = new CpModel();

建立資料

下列程式碼會設定問題資料。

Python

  data_str = """
worker  task  cost
    w1    t1    90
    w1    t2    80
    w1    t3    75
    w1    t4    70
    w2    t1    35
    w2    t2    85
    w2    t3    55
    w2    t4    65
    w3    t1   125
    w3    t2    95
    w3    t3    90
    w3    t4    95
    w4    t1    45
    w4    t2   110
    w4    t3    95
    w4    t4   115
    w5    t1    50
    w5    t2   110
    w5    t3    90
    w5    t4   100
"""

  data = pd.read_table(io.StringIO(data_str), sep=r"\s+")

C++

const std::vector<std::vector<int>> costs{
    {90, 80, 75, 70},   {35, 85, 55, 65},   {125, 95, 90, 95},
    {45, 110, 95, 115}, {50, 100, 90, 100},
};
const int num_workers = static_cast<int>(costs.size());
const int num_tasks = static_cast<int>(costs[0].size());

Java

int[][] costs = {
    {90, 80, 75, 70},
    {35, 85, 55, 65},
    {125, 95, 90, 95},
    {45, 110, 95, 115},
    {50, 100, 90, 100},
};
final int numWorkers = costs.length;
final int numTasks = costs[0].length;

final int[] allWorkers = IntStream.range(0, numWorkers).toArray();
final int[] allTasks = IntStream.range(0, numTasks).toArray();

C#

int[,] costs = {
    { 90, 80, 75, 70 }, { 35, 85, 55, 65 }, { 125, 95, 90, 95 }, { 45, 110, 95, 115 }, { 50, 100, 90, 100 },
};
int numWorkers = costs.GetLength(0);
int numTasks = costs.GetLength(1);

costs 陣列會對應至將工作站指派給工作的費用,如上所示。

建立變數

下列程式碼會為問題建立二進位整數變數。

Python

x = model.new_bool_var_series(name="x", index=data.index)

C++

// x[i][j] is an array of Boolean variables. x[i][j] is true
// if worker i is assigned to task j.
std::vector<std::vector<BoolVar>> x(num_workers,
                                    std::vector<BoolVar>(num_tasks));
for (int i = 0; i < num_workers; ++i) {
  for (int j = 0; j < num_tasks; ++j) {
    x[i][j] = cp_model.NewBoolVar();
  }
}

Java

Literal[][] x = new Literal[numWorkers][numTasks];
for (int worker : allWorkers) {
  for (int task : allTasks) {
    x[worker][task] = model.newBoolVar("x[" + worker + "," + task + "]");
  }
}

C#

BoolVar[,] x = new BoolVar[numWorkers, numTasks];
// Variables in a 1-dim array.
for (int worker = 0; worker < numWorkers; ++worker)
{
    for (int task = 0; task < numTasks; ++task)
    {
        x[worker, task] = model.NewBoolVar($"worker_{worker}_task_{task}");
    }
}

建立限制條件

下列程式碼會建立問題限制條件。

Python

# Each worker is assigned to at most one task.
for unused_name, tasks in data.groupby("worker"):
    model.add_at_most_one(x[tasks.index])

# Each task is assigned to exactly one worker.
for unused_name, workers in data.groupby("task"):
    model.add_exactly_one(x[workers.index])

C++

// Each worker is assigned to at most one task.
for (int i = 0; i < num_workers; ++i) {
  cp_model.AddAtMostOne(x[i]);
}
// Each task is assigned to exactly one worker.
for (int j = 0; j < num_tasks; ++j) {
  std::vector<BoolVar> tasks;
  for (int i = 0; i < num_workers; ++i) {
    tasks.push_back(x[i][j]);
  }
  cp_model.AddExactlyOne(tasks);
}

Java

// Each worker is assigned to at most one task.
for (int worker : allWorkers) {
  List<Literal> tasks = new ArrayList<>();
  for (int task : allTasks) {
    tasks.add(x[worker][task]);
  }
  model.addAtMostOne(tasks);
}

// Each task is assigned to exactly one worker.
for (int task : allTasks) {
  List<Literal> workers = new ArrayList<>();
  for (int worker : allWorkers) {
    workers.add(x[worker][task]);
  }
  model.addExactlyOne(workers);
}

C#

// Each worker is assigned to at most one task.
for (int worker = 0; worker < numWorkers; ++worker)
{
    List<ILiteral> tasks = new List<ILiteral>();
    for (int task = 0; task < numTasks; ++task)
    {
        tasks.Add(x[worker, task]);
    }
    model.AddAtMostOne(tasks);
}

// Each task is assigned to exactly one worker.
for (int task = 0; task < numTasks; ++task)
{
    List<ILiteral> workers = new List<ILiteral>();
    for (int worker = 0; worker < numWorkers; ++worker)
    {
        workers.Add(x[worker, task]);
    }
    model.AddExactlyOne(workers);
}

建立目標函式

下列程式碼會建立問題的目標函式。

Python

model.minimize(data.cost.dot(x))

C++

LinearExpr total_cost;
for (int i = 0; i < num_workers; ++i) {
  for (int j = 0; j < num_tasks; ++j) {
    total_cost += x[i][j] * costs[i][j];
  }
}
cp_model.Minimize(total_cost);

Java

LinearExprBuilder obj = LinearExpr.newBuilder();
for (int worker : allWorkers) {
  for (int task : allTasks) {
    obj.addTerm(x[worker][task], costs[worker][task]);
  }
}
model.minimize(obj);

C#

LinearExprBuilder obj = LinearExpr.NewBuilder();
for (int worker = 0; worker < numWorkers; ++worker)
{
    for (int task = 0; task < numTasks; ++task)
    {
        obj.AddTerm((IntVar)x[worker, task], costs[worker, task]);
    }
}
model.Minimize(obj);

目標函式的值是解題器指派值 1 的所有變數的總費用。

叫用求解工具

下列程式碼會叫用解題工具。

Python

solver = cp_model.CpSolver()
status = solver.solve(model)

C++

const CpSolverResponse response = Solve(cp_model.Build());

Java

CpSolver solver = new CpSolver();
CpSolverStatus status = solver.solve(model);

C#

CpSolver solver = new CpSolver();
CpSolverStatus status = solver.Solve(model);
Console.WriteLine($"Solve status: {status}");

以下程式碼可列出問題的解決方案。

Python

if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE:
    print(f"Total cost = {solver.objective_value}\n")
    selected = data.loc[solver.boolean_values(x).loc[lambda x: x].index]
    for unused_index, row in selected.iterrows():
        print(f"{row.task} assigned to {row.worker} with a cost of {row.cost}")
elif status == cp_model.INFEASIBLE:
    print("No solution found")
else:
    print("Something is wrong, check the status and the log of the solve")

C++

if (response.status() == CpSolverStatus::INFEASIBLE) {
  LOG(FATAL) << "No solution found.";
}

LOG(INFO) << "Total cost: " << response.objective_value();
LOG(INFO);
for (int i = 0; i < num_workers; ++i) {
  for (int j = 0; j < num_tasks; ++j) {
    if (SolutionBooleanValue(response, x[i][j])) {
      LOG(INFO) << "Task " << i << " assigned to worker " << j
                << ".  Cost: " << costs[i][j];
    }
  }
}

Java

// Check that the problem has a feasible solution.
if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) {
  System.out.println("Total cost: " + solver.objectiveValue() + "\n");
  for (int i = 0; i < numWorkers; ++i) {
    for (int j = 0; j < numTasks; ++j) {
      if (solver.booleanValue(x[i][j])) {
        System.out.println(
            "Worker " + i + " assigned to task " + j + ".  Cost: " + costs[i][j]);
      }
    }
  }
} else {
  System.err.println("No solution found.");
}

C#

// Check that the problem has a feasible solution.
if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible)
{
    Console.WriteLine($"Total cost: {solver.ObjectiveValue}\n");
    for (int i = 0; i < numWorkers; ++i)
    {
        for (int j = 0; j < numTasks; ++j)
        {
            if (solver.Value(x[i, j]) > 0.5)
            {
                Console.WriteLine($"Worker {i} assigned to task {j}. Cost: {costs[i, j]}");
            }
        }
    }
}
else
{
    Console.WriteLine("No solution found.");
}

以下是程式的輸出內容。

Total cost = 265

Worker  0  assigned to task  3   Cost =  70
Worker  1  assigned to task  2   Cost =  55
Worker  2  assigned to task  1   Cost =  95
Worker  3  assigned to task  0   Cost =  45

完成計畫

以下是 CP-SAT 解決方案的完整計畫。

Python

import io

import pandas as pd

from ortools.sat.python import cp_model


def main() -> None:
    # Data
    data_str = """
  worker  task  cost
      w1    t1    90
      w1    t2    80
      w1    t3    75
      w1    t4    70
      w2    t1    35
      w2    t2    85
      w2    t3    55
      w2    t4    65
      w3    t1   125
      w3    t2    95
      w3    t3    90
      w3    t4    95
      w4    t1    45
      w4    t2   110
      w4    t3    95
      w4    t4   115
      w5    t1    50
      w5    t2   110
      w5    t3    90
      w5    t4   100
  """

    data = pd.read_table(io.StringIO(data_str), sep=r"\s+")

    # Model
    model = cp_model.CpModel()

    # Variables
    x = model.new_bool_var_series(name="x", index=data.index)

    # Constraints
    # Each worker is assigned to at most one task.
    for unused_name, tasks in data.groupby("worker"):
        model.add_at_most_one(x[tasks.index])

    # Each task is assigned to exactly one worker.
    for unused_name, workers in data.groupby("task"):
        model.add_exactly_one(x[workers.index])

    # Objective
    model.minimize(data.cost.dot(x))

    # Solve
    solver = cp_model.CpSolver()
    status = solver.solve(model)

    # Print solution.
    if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE:
        print(f"Total cost = {solver.objective_value}\n")
        selected = data.loc[solver.boolean_values(x).loc[lambda x: x].index]
        for unused_index, row in selected.iterrows():
            print(f"{row.task} assigned to {row.worker} with a cost of {row.cost}")
    elif status == cp_model.INFEASIBLE:
        print("No solution found")
    else:
        print("Something is wrong, check the status and the log of the solve")


if __name__ == "__main__":
    main()

C++

#include <stdlib.h>

#include <vector>

#include "ortools/base/logging.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"

namespace operations_research {
namespace sat {

void IntegerProgrammingExample() {
  // Data
  const std::vector<std::vector<int>> costs{
      {90, 80, 75, 70},   {35, 85, 55, 65},   {125, 95, 90, 95},
      {45, 110, 95, 115}, {50, 100, 90, 100},
  };
  const int num_workers = static_cast<int>(costs.size());
  const int num_tasks = static_cast<int>(costs[0].size());

  // Model
  CpModelBuilder cp_model;

  // Variables
  // x[i][j] is an array of Boolean variables. x[i][j] is true
  // if worker i is assigned to task j.
  std::vector<std::vector<BoolVar>> x(num_workers,
                                      std::vector<BoolVar>(num_tasks));
  for (int i = 0; i < num_workers; ++i) {
    for (int j = 0; j < num_tasks; ++j) {
      x[i][j] = cp_model.NewBoolVar();
    }
  }

  // Constraints
  // Each worker is assigned to at most one task.
  for (int i = 0; i < num_workers; ++i) {
    cp_model.AddAtMostOne(x[i]);
  }
  // Each task is assigned to exactly one worker.
  for (int j = 0; j < num_tasks; ++j) {
    std::vector<BoolVar> tasks;
    for (int i = 0; i < num_workers; ++i) {
      tasks.push_back(x[i][j]);
    }
    cp_model.AddExactlyOne(tasks);
  }

  // Objective
  LinearExpr total_cost;
  for (int i = 0; i < num_workers; ++i) {
    for (int j = 0; j < num_tasks; ++j) {
      total_cost += x[i][j] * costs[i][j];
    }
  }
  cp_model.Minimize(total_cost);

  // Solve
  const CpSolverResponse response = Solve(cp_model.Build());

  // Print solution.
  if (response.status() == CpSolverStatus::INFEASIBLE) {
    LOG(FATAL) << "No solution found.";
  }

  LOG(INFO) << "Total cost: " << response.objective_value();
  LOG(INFO);
  for (int i = 0; i < num_workers; ++i) {
    for (int j = 0; j < num_tasks; ++j) {
      if (SolutionBooleanValue(response, x[i][j])) {
        LOG(INFO) << "Task " << i << " assigned to worker " << j
                  << ".  Cost: " << costs[i][j];
      }
    }
  }
}
}  // namespace sat
}  // namespace operations_research

int main(int argc, char** argv) {
  operations_research::sat::IntegerProgrammingExample();
  return EXIT_SUCCESS;
}

Java

package com.google.ortools.sat.samples;
import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverStatus;
import com.google.ortools.sat.LinearExpr;
import com.google.ortools.sat.LinearExprBuilder;
import com.google.ortools.sat.Literal;
import java.util.ArrayList;
import java.util.List;
import java.util.stream.IntStream;

/** Assignment problem. */
public class AssignmentSat {
  public static void main(String[] args) {
    Loader.loadNativeLibraries();
    // Data
    int[][] costs = {
        {90, 80, 75, 70},
        {35, 85, 55, 65},
        {125, 95, 90, 95},
        {45, 110, 95, 115},
        {50, 100, 90, 100},
    };
    final int numWorkers = costs.length;
    final int numTasks = costs[0].length;

    final int[] allWorkers = IntStream.range(0, numWorkers).toArray();
    final int[] allTasks = IntStream.range(0, numTasks).toArray();

    // Model
    CpModel model = new CpModel();

    // Variables
    Literal[][] x = new Literal[numWorkers][numTasks];
    for (int worker : allWorkers) {
      for (int task : allTasks) {
        x[worker][task] = model.newBoolVar("x[" + worker + "," + task + "]");
      }
    }

    // Constraints
    // Each worker is assigned to at most one task.
    for (int worker : allWorkers) {
      List<Literal> tasks = new ArrayList<>();
      for (int task : allTasks) {
        tasks.add(x[worker][task]);
      }
      model.addAtMostOne(tasks);
    }

    // Each task is assigned to exactly one worker.
    for (int task : allTasks) {
      List<Literal> workers = new ArrayList<>();
      for (int worker : allWorkers) {
        workers.add(x[worker][task]);
      }
      model.addExactlyOne(workers);
    }

    // Objective
    LinearExprBuilder obj = LinearExpr.newBuilder();
    for (int worker : allWorkers) {
      for (int task : allTasks) {
        obj.addTerm(x[worker][task], costs[worker][task]);
      }
    }
    model.minimize(obj);

    // Solve
    CpSolver solver = new CpSolver();
    CpSolverStatus status = solver.solve(model);

    // Print solution.
    // Check that the problem has a feasible solution.
    if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) {
      System.out.println("Total cost: " + solver.objectiveValue() + "\n");
      for (int i = 0; i < numWorkers; ++i) {
        for (int j = 0; j < numTasks; ++j) {
          if (solver.booleanValue(x[i][j])) {
            System.out.println(
                "Worker " + i + " assigned to task " + j + ".  Cost: " + costs[i][j]);
          }
        }
      }
    } else {
      System.err.println("No solution found.");
    }
  }

  private AssignmentSat() {}
}

C#

using System;
using System.Collections.Generic;
using Google.OrTools.Sat;

public class AssignmentSat
{
    public static void Main(String[] args)
    {
        // Data.
        int[,] costs = {
            { 90, 80, 75, 70 }, { 35, 85, 55, 65 }, { 125, 95, 90, 95 }, { 45, 110, 95, 115 }, { 50, 100, 90, 100 },
        };
        int numWorkers = costs.GetLength(0);
        int numTasks = costs.GetLength(1);

        // Model.
        CpModel model = new CpModel();

        // Variables.
        BoolVar[,] x = new BoolVar[numWorkers, numTasks];
        // Variables in a 1-dim array.
        for (int worker = 0; worker < numWorkers; ++worker)
        {
            for (int task = 0; task < numTasks; ++task)
            {
                x[worker, task] = model.NewBoolVar($"worker_{worker}_task_{task}");
            }
        }

        // Constraints
        // Each worker is assigned to at most one task.
        for (int worker = 0; worker < numWorkers; ++worker)
        {
            List<ILiteral> tasks = new List<ILiteral>();
            for (int task = 0; task < numTasks; ++task)
            {
                tasks.Add(x[worker, task]);
            }
            model.AddAtMostOne(tasks);
        }

        // Each task is assigned to exactly one worker.
        for (int task = 0; task < numTasks; ++task)
        {
            List<ILiteral> workers = new List<ILiteral>();
            for (int worker = 0; worker < numWorkers; ++worker)
            {
                workers.Add(x[worker, task]);
            }
            model.AddExactlyOne(workers);
        }

        // Objective
        LinearExprBuilder obj = LinearExpr.NewBuilder();
        for (int worker = 0; worker < numWorkers; ++worker)
        {
            for (int task = 0; task < numTasks; ++task)
            {
                obj.AddTerm((IntVar)x[worker, task], costs[worker, task]);
            }
        }
        model.Minimize(obj);

        // Solve
        CpSolver solver = new CpSolver();
        CpSolverStatus status = solver.Solve(model);
        Console.WriteLine($"Solve status: {status}");

        // Print solution.
        // Check that the problem has a feasible solution.
        if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible)
        {
            Console.WriteLine($"Total cost: {solver.ObjectiveValue}\n");
            for (int i = 0; i < numWorkers; ++i)
            {
                for (int j = 0; j < numTasks; ++j)
                {
                    if (solver.Value(x[i, j]) > 0.5)
                    {
                        Console.WriteLine($"Worker {i} assigned to task {j}. Cost: {costs[i, j]}");
                    }
                }
            }
        }
        else
        {
            Console.WriteLine("No solution found.");
        }

        Console.WriteLine("Statistics");
        Console.WriteLine($"  - conflicts : {solver.NumConflicts()}");
        Console.WriteLine($"  - branches  : {solver.NumBranches()}");
        Console.WriteLine($"  - wall time : {solver.WallTime()}s");
    }
}