আপনি চিত্র বা ভিডিওতে পাঠ্য সনাক্ত করতে ML কিট ব্যবহার করতে পারেন, যেমন রাস্তার চিহ্নের পাঠ্য। এই বৈশিষ্ট্যের প্রধান বৈশিষ্ট্য হল:
বৈশিষ্ট্য | আনবান্ডেড | বান্ডিল |
---|---|---|
লাইব্রেরির নাম | com.google.android.gms:play-services-mlkit-text-recognition com.google.android.gms:play-services-mlkit-text-recognition-Chinese com.google.android.gms:play-services-mlkit-text-recognition-devanagari com.google.android.gms:play-services-mlkit-text-recognition-japanese com.google.android.gms:play-services-mlkit-text-recognition-korean | com.google.mlkit:পাঠ্য-স্বীকৃতি com.google.mlkit:text-recognition-Chinese com.google.mlkit:text-recognition-devnagari com.google.mlkit:text-recognition-japanese com.google.mlkit:text-recognition-korean |
বাস্তবায়ন | মডেলটি গতিশীলভাবে Google Play পরিষেবার মাধ্যমে ডাউনলোড করা হয়। | মডেলটি বিল্ড টাইমে আপনার অ্যাপের সাথে স্ট্যাটিকভাবে লিঙ্ক করা থাকে। |
অ্যাপের আকার | স্ক্রিপ্ট আর্কিটেকচারে প্রায় 260 KB আকার বৃদ্ধি। | স্ক্রিপ্ট প্রতি আর্কিটেকচারে প্রায় 4 MB আকার বৃদ্ধি। |
প্রারম্ভিক সময় | প্রথম ব্যবহারের আগে মডেল ডাউনলোড করার জন্য অপেক্ষা করতে হতে পারে। | মডেল অবিলম্বে উপলব্ধ. |
কর্মক্ষমতা | ল্যাটিন স্ক্রিপ্ট লাইব্রেরির জন্য বেশিরভাগ ডিভাইসে রিয়েল-টাইম, অন্যদের জন্য ধীর। | ল্যাটিন স্ক্রিপ্ট লাইব্রেরির জন্য বেশিরভাগ ডিভাইসে রিয়েল-টাইম, অন্যদের জন্য ধীর। |
চেষ্টা করে দেখুন
- এই API এর একটি উদাহরণ ব্যবহার দেখতে নমুনা অ্যাপের সাথে খেলুন।
- কোডল্যাবের সাথে কোডটি নিজে চেষ্টা করুন।
আপনি শুরু করার আগে
- আপনার প্রকল্প-স্তরের
build.gradle
ফাইলে, আপনারbuildscript
এবংallprojects
উভয় বিভাগেই Google-এর Maven সংগ্রহস্থল অন্তর্ভুক্ত করা নিশ্চিত করুন৷ আপনার মডিউলের অ্যাপ-লেভেল গ্রেডল ফাইলে এমএল কিট অ্যান্ড্রয়েড লাইব্রেরির নির্ভরতা যোগ করুন, যা সাধারণত
app/build.gradle
হয় :আপনার অ্যাপের সাথে মডেল বান্ডিল করার জন্য:
dependencies { // To recognize Latin script implementation 'com.google.mlkit:text-recognition:16.0.1' // To recognize Chinese script implementation 'com.google.mlkit:text-recognition-chinese:16.0.1' // To recognize Devanagari script implementation 'com.google.mlkit:text-recognition-devanagari:16.0.1' // To recognize Japanese script implementation 'com.google.mlkit:text-recognition-japanese:16.0.1' // To recognize Korean script implementation 'com.google.mlkit:text-recognition-korean:16.0.1' }
Google Play পরিষেবাগুলিতে মডেলটি ব্যবহার করার জন্য:
dependencies { // To recognize Latin script implementation 'com.google.android.gms:play-services-mlkit-text-recognition:19.0.1' // To recognize Chinese script implementation 'com.google.android.gms:play-services-mlkit-text-recognition-chinese:16.0.1' // To recognize Devanagari script implementation 'com.google.android.gms:play-services-mlkit-text-recognition-devanagari:16.0.1' // To recognize Japanese script implementation 'com.google.android.gms:play-services-mlkit-text-recognition-japanese:16.0.1' // To recognize Korean script implementation 'com.google.android.gms:play-services-mlkit-text-recognition-korean:16.0.1' }
আপনি যদি Google Play পরিষেবাগুলিতে মডেলটি ব্যবহার করতে চান , তাহলে প্লে স্টোর থেকে আপনার অ্যাপ ইনস্টল হওয়ার পরে আপনি ডিভাইসে মডেলটিকে স্বয়ংক্রিয়ভাবে ডাউনলোড করতে আপনার অ্যাপটি কনফিগার করতে পারেন। এটি করতে, আপনার অ্যাপের
AndroidManifest.xml
ফাইলে নিম্নলিখিত ঘোষণা যোগ করুন:<application ...> ... <meta-data android:name="com.google.mlkit.vision.DEPENDENCIES" android:value="ocr" > <!-- To use multiple models: android:value="ocr,ocr_chinese,ocr_devanagari,ocr_japanese,ocr_korean,..." --> </application>
এছাড়াও আপনি স্পষ্টভাবে মডেলের উপলব্ধতা পরীক্ষা করতে পারেন এবং Google Play পরিষেবা ModuleInstallClient API- এর মাধ্যমে ডাউনলোডের অনুরোধ করতে পারেন। আপনি যদি ইনস্টল-টাইম মডেল ডাউনলোডগুলি সক্ষম না করেন বা স্পষ্ট ডাউনলোডের অনুরোধ না করেন, আপনি প্রথমবার স্ক্যানার চালানোর সময় মডেলটি ডাউনলোড করা হবে৷ ডাউনলোড সম্পূর্ণ হওয়ার আগে আপনি যে অনুরোধগুলি করেন তা কোনও ফলাফল দেয় না।
1. TextRecognizer
এর একটি উদাহরণ তৈরি করুন
TextRecognizer
এর একটি উদাহরণ তৈরি করুন, লাইব্রেরির সাথে সম্পর্কিত বিকল্পগুলি পাস করে আপনি উপরে একটি নির্ভরতা ঘোষণা করেছেন: কোটলিন
// When using Latin script library val recognizer = TextRecognition.getClient(TextRecognizerOptions.DEFAULT_OPTIONS) // When using Chinese script library val recognizer = TextRecognition.getClient(ChineseTextRecognizerOptions.Builder().build()) // When using Devanagari script library val recognizer = TextRecognition.getClient(DevanagariTextRecognizerOptions.Builder().build()) // When using Japanese script library val recognizer = TextRecognition.getClient(JapaneseTextRecognizerOptions.Builder().build()) // When using Korean script library val recognizer = TextRecognition.getClient(KoreanTextRecognizerOptions.Builder().build())
জাভা
// When using Latin script library TextRecognizer recognizer = TextRecognition.getClient(TextRecognizerOptions.DEFAULT_OPTIONS); // When using Chinese script library TextRecognizer recognizer = TextRecognition.getClient(new ChineseTextRecognizerOptions.Builder().build()); // When using Devanagari script library TextRecognizer recognizer = TextRecognition.getClient(new DevanagariTextRecognizerOptions.Builder().build()); // When using Japanese script library TextRecognizer recognizer = TextRecognition.getClient(new JapaneseTextRecognizerOptions.Builder().build()); // When using Korean script library TextRecognizer recognizer = TextRecognition.getClient(new KoreanTextRecognizerOptions.Builder().build());
2. ইনপুট ইমেজ প্রস্তুত করুন
একটি ছবিতে পাঠ্য সনাক্ত করতে, একটি Bitmap
, media.Image
ইমেজ , ByteBuffer
, বাইট অ্যারে বা ডিভাইসে একটি ফাইল থেকে একটি InputImage
অবজেক্ট তৈরি করুন৷ তারপর, InputImage
অবজেক্টটিকে TextRecognizer
এর processImage
পদ্ধতিতে পাস করুন।
আপনি বিভিন্ন উত্স থেকে একটি InputImage
অবজেক্ট তৈরি করতে পারেন, প্রতিটি নীচে ব্যাখ্যা করা হয়েছে৷
একটি media.Image
ব্যবহার করে. ইমেজ
একটি media.Image
থেকে একটি InputImage
অবজেক্ট তৈরি করতে। ইমেজ অবজেক্ট, যেমন আপনি যখন একটি ডিভাইসের ক্যামেরা থেকে একটি ইমেজ ক্যাপচার করেন, তখন media.Image
পাস করুন। ইমেজ অবজেক্ট এবং ইমেজের রোটেশন InputImage.fromMediaImage()
এ।
আপনি যদি CameraX লাইব্রেরি ব্যবহার করেন, OnImageCapturedListener
এবং ImageAnalysis.Analyzer
ক্লাসগুলি আপনার জন্য ঘূর্ণন মান গণনা করে৷
কোটলিন
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy) { val mediaImage = imageProxy.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
জাভা
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { Image mediaImage = imageProxy.getImage(); if (mediaImage != null) { InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees()); // Pass image to an ML Kit Vision API // ... } } }
আপনি যদি এমন একটি ক্যামেরা লাইব্রেরি ব্যবহার না করেন যা আপনাকে চিত্রের ঘূর্ণন ডিগ্রী দেয়, আপনি ডিভাইসের ঘূর্ণন ডিগ্রী এবং ডিভাইসে ক্যামেরা সেন্সরের অভিযোজন থেকে এটি গণনা করতে পারেন:
কোটলিন
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 0) ORIENTATIONS.append(Surface.ROTATION_90, 90) ORIENTATIONS.append(Surface.ROTATION_180, 180) ORIENTATIONS.append(Surface.ROTATION_270, 270) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // Get the device's sensor orientation. val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360 } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360 } return rotationCompensation }
জাভা
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 0); ORIENTATIONS.append(Surface.ROTATION_90, 90); ORIENTATIONS.append(Surface.ROTATION_180, 180); ORIENTATIONS.append(Surface.ROTATION_270, 270); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // Get the device's sensor orientation. CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360; } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360; } return rotationCompensation; }
তারপর, media.Image
অবজেক্ট এবং ঘূর্ণন ডিগ্রী মান InputImage.fromMediaImage()
এ পাস করুন :
কোটলিন
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
একটি ফাইল ইউআরআই ব্যবহার করে
একটি ফাইল URI থেকে একটি InputImage
অবজেক্ট তৈরি করতে, অ্যাপের প্রসঙ্গ এবং ফাইল URIকে InputImage.fromFilePath()
এ পাস করুন। এটি উপযোগী যখন আপনি একটি ACTION_GET_CONTENT
উদ্দেশ্য ব্যবহার করে ব্যবহারকারীকে তাদের গ্যালারি অ্যাপ থেকে একটি ছবি নির্বাচন করতে অনুরোধ করেন৷
কোটলিন
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
একটি ByteBuffer
বা ByteArray
ব্যবহার করে
একটি ByteBuffer
বা একটি ByteArray
থেকে একটি InputImage
অবজেক্ট তৈরি করতে, প্রথমে media.Image
ইনপুটের জন্য পূর্বে বর্ণিত চিত্রের ঘূর্ণন ডিগ্রি গণনা করুন৷ তারপরে, ছবির উচ্চতা, প্রস্থ, রঙ এনকোডিং বিন্যাস এবং ঘূর্ণন ডিগ্রী সহ বাফার বা অ্যারে সহ InputImage
অবজেক্ট তৈরি করুন:
কোটলিন
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ) // Or: val image = InputImage.fromByteArray( byteArray, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
জাভা
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ); // Or: InputImage image = InputImage.fromByteArray( byteArray, /* image width */480, /* image height */360, rotation, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
একটি Bitmap
ব্যবহার করে
একটি Bitmap
বস্তু থেকে একটি InputImage
অবজেক্ট তৈরি করতে, নিম্নলিখিত ঘোষণা করুন:
কোটলিন
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
চিত্রটি ঘূর্ণন ডিগ্রী সহ একটি Bitmap
বস্তু দ্বারা উপস্থাপিত হয়।
3. চিত্রটি প্রক্রিয়া করুন
process
পদ্ধতিতে চিত্রটি পাস করুন:
কোটলিন
val result = recognizer.process(image) .addOnSuccessListener { visionText -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
জাভা
Task<Text> result = recognizer.process(image) .addOnSuccessListener(new OnSuccessListener<Text>() { @Override public void onSuccess(Text visionText) { // Task completed successfully // ... } }) .addOnFailureListener( new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
4. স্বীকৃত পাঠ্যের ব্লকগুলি থেকে পাঠ্য বের করুন
পাঠ্য শনাক্তকরণ অপারেশন সফল হলে, একটি Text
বস্তু সফল শ্রোতার কাছে প্রেরণ করা হয়। একটি Text
অবজেক্টে ইমেজে স্বীকৃত সম্পূর্ণ টেক্সট এবং শূন্য বা তার বেশি TextBlock
অবজেক্ট থাকে।
প্রতিটি TextBlock
পাঠ্যের একটি আয়তক্ষেত্রাকার ব্লকের প্রতিনিধিত্ব করে, যাতে শূন্য বা তার বেশি Line
অবজেক্ট থাকে। প্রতিটি Line
অবজেক্ট পাঠ্যের একটি লাইনকে উপস্থাপন করে, যাতে শূন্য বা তার বেশি Element
বস্তু রয়েছে। প্রতিটি Element
অবজেক্ট একটি শব্দ বা শব্দের মতো সত্তাকে প্রতিনিধিত্ব করে, যেখানে শূন্য বা তার বেশি Symbol
বস্তু রয়েছে। প্রতিটি Symbol
বস্তু একটি অক্ষর, একটি অঙ্ক বা একটি শব্দের মত সত্তা প্রতিনিধিত্ব করে।
প্রতিটি TextBlock
, Line
, Element
এবং Symbol
অবজেক্টের জন্য, আপনি অঞ্চলে স্বীকৃত পাঠ্য, অঞ্চলের সীমাবদ্ধ স্থানাঙ্ক এবং অন্যান্য অনেক বৈশিষ্ট্য যেমন ঘূর্ণন তথ্য, আত্মবিশ্বাসের স্কোর ইত্যাদি পেতে পারেন।
যেমন:
কোটলিন
val resultText = result.text for (block in result.textBlocks) { val blockText = block.text val blockCornerPoints = block.cornerPoints val blockFrame = block.boundingBox for (line in block.lines) { val lineText = line.text val lineCornerPoints = line.cornerPoints val lineFrame = line.boundingBox for (element in line.elements) { val elementText = element.text val elementCornerPoints = element.cornerPoints val elementFrame = element.boundingBox } } }
জাভা
String resultText = result.getText(); for (Text.TextBlock block : result.getTextBlocks()) { String blockText = block.getText(); Point[] blockCornerPoints = block.getCornerPoints(); Rect blockFrame = block.getBoundingBox(); for (Text.Line line : block.getLines()) { String lineText = line.getText(); Point[] lineCornerPoints = line.getCornerPoints(); Rect lineFrame = line.getBoundingBox(); for (Text.Element element : line.getElements()) { String elementText = element.getText(); Point[] elementCornerPoints = element.getCornerPoints(); Rect elementFrame = element.getBoundingBox(); for (Text.Symbol symbol : element.getSymbols()) { String symbolText = symbol.getText(); Point[] symbolCornerPoints = symbol.getCornerPoints(); Rect symbolFrame = symbol.getBoundingBox(); } } } }
ইনপুট ইমেজ নির্দেশিকা
ML Kit সঠিকভাবে পাঠ্য সনাক্ত করার জন্য, ইনপুট চিত্রগুলিতে পাঠ্য থাকতে হবে যা পর্যাপ্ত পিক্সেল ডেটা দ্বারা প্রতিনিধিত্ব করা হয়। আদর্শভাবে, প্রতিটি অক্ষর কমপক্ষে 16x16 পিক্সেল হওয়া উচিত। সাধারণত 24x24 পিক্সেলের চেয়ে বড় অক্ষরগুলির জন্য কোন নির্ভুলতা সুবিধা নেই।
সুতরাং, উদাহরণস্বরূপ, একটি 640x480 চিত্র একটি ব্যবসায়িক কার্ড স্ক্যান করতে ভাল কাজ করতে পারে যা চিত্রটির সম্পূর্ণ প্রস্থ দখল করে। অক্ষর আকারের কাগজে মুদ্রিত একটি নথি স্ক্যান করতে, একটি 720x1280 পিক্সেল চিত্রের প্রয়োজন হতে পারে।
খারাপ ইমেজ ফোকাস টেক্সট স্বীকৃতি নির্ভুলতা প্রভাবিত করতে পারে. আপনি যদি গ্রহণযোগ্য ফলাফল না পান, তাহলে ব্যবহারকারীকে ছবিটি পুনরায় ক্যাপচার করতে বলার চেষ্টা করুন।
আপনি যদি রিয়েল-টাইম অ্যাপ্লিকেশানে টেক্সট চিনতে থাকেন, তাহলে আপনার ইনপুট ইমেজের সামগ্রিক মাত্রা বিবেচনা করা উচিত। ছোট ছবি দ্রুত প্রক্রিয়া করা যেতে পারে. লেটেন্সি কমাতে, নিশ্চিত করুন যে টেক্সট যতটা সম্ভব ইমেজ দখল করে, এবং কম রেজোলিউশনে ছবি ক্যাপচার করুন (উপরে উল্লিখিত নির্ভুলতার প্রয়োজনীয়তাগুলি মনে রেখে)। আরও তথ্যের জন্য, কর্মক্ষমতা উন্নত করার টিপস দেখুন।
কর্মক্ষমতা উন্নত করার টিপস
- আপনি
Camera
বাcamera2
API ব্যবহার করলে, ডিটেক্টরে থ্রোটল কল করুন। ডিটেক্টর চলাকালীন একটি নতুন ভিডিও ফ্রেম উপলব্ধ হলে, ফ্রেমটি ফেলে দিন। একটি উদাহরণের জন্য Quickstart নমুনা অ্যাপেVisionProcessorBase
ক্লাস দেখুন। - আপনি যদি
CameraX
API ব্যবহার করেন, নিশ্চিত হন যে ব্যাকপ্রেশার কৌশলটি এর ডিফল্ট মানImageAnalysis.STRATEGY_KEEP_ONLY_LATEST
এ সেট করা আছে। এটি গ্যারান্টি দেয় যে একবারে বিশ্লেষণের জন্য শুধুমাত্র একটি চিত্র সরবরাহ করা হবে। বিশ্লেষক ব্যস্ত থাকাকালীন যদি আরও ছবি তৈরি করা হয়, তবে সেগুলি স্বয়ংক্রিয়ভাবে ড্রপ করা হবে এবং বিতরণের জন্য সারিবদ্ধ হবে না। একবার ImageProxy.close() কল করে বিশ্লেষিত চিত্রটি বন্ধ হয়ে গেলে পরবর্তী সর্বশেষ চিত্রটি বিতরণ করা হবে। - আপনি যদি ইনপুট ইমেজে গ্রাফিক্স ওভারলে করার জন্য ডিটেক্টরের আউটপুট ব্যবহার করেন, তাহলে প্রথমে ML Kit থেকে ফলাফল পান, তারপর একটি একক ধাপে চিত্র এবং ওভারলে রেন্ডার করুন। এটি প্রতিটি ইনপুট ফ্রেমের জন্য শুধুমাত্র একবার প্রদর্শন পৃষ্ঠে রেন্ডার করে। একটি উদাহরণের জন্য Quickstart নমুনা অ্যাপে
CameraSourcePreview
এবংGraphicOverlay
ক্লাসগুলি দেখুন। - আপনি Camera2 API ব্যবহার করলে,
ImageFormat.YUV_420_888
ফরম্যাটে ছবি ক্যাপচার করুন। আপনি পুরানো ক্যামেরা API ব্যবহার করলে,ImageFormat.NV21
ফর্ম্যাটে ছবিগুলি ক্যাপচার করুন৷ - কম রেজোলিউশনে ছবি তোলার কথা বিবেচনা করুন। যাইহোক, এই API এর চিত্র মাত্রা প্রয়োজনীয়তাও মনে রাখবেন।