זיהוי טקסט בתמונות באמצעות ערכת ML ב-Android

אפשר להשתמש ב-ML Kit כדי לזהות טקסט בתמונות או בסרטונים, למשל טקסט שלט רחוב. המאפיינים העיקריים של התכונה הזו הם:

תכונה לא חלק מהחבילה בחבילה
שם הספרייה com.google.android.gms:play-services-mlkit-text-recognition

com.google.android.gms:play-services-mlkit-text-recognition-chinese

com.google.android.gms:play-services-mlkit-text-recognition-devanagari

com.google.android.gms:play-services-mlkit-text-recognition-japanese

com.google.android.gms:play-services-mlkit-text-recognition-korean

com.google.mlkit:text-recognition

com.google.mlkit:text-recognition-chinese

com.google.mlkit:text-recognition-devanagari

com.google.mlkit:text-recognition-japanese

com.google.mlkit:text-recognition-korean

הטמעה הורדת המודל מתבצעת באופן דינמי דרך Google Play Services. המודל מקושר באופן סטטי לאפליקציה בזמן ה-build.
גודל האפליקציה הגדלה של כ-260KB לכל ארכיטקטורת סקריפט. הגדלה של כ-4MB לכל סקריפט בכל ארכיטקטורה.
זמן האתחול יכול להיות שתצטרכו להמתין להורדת המודל לפני השימוש הראשון. המודל זמין באופן מיידי.
ביצועים זמן אמת ברוב המכשירים לספריית סקריפטים לטיניים, אבל איטי יותר עבור אחרים. זמן אמת ברוב המכשירים לספריית סקריפטים לטיניים, אבל איטי יותר עבור אחרים.

רוצה לנסות?

לפני שמתחילים

  1. בקובץ build.gradle ברמת הפרויקט, חשוב לכלול את מאגר Maven של Google בקטע buildscript וגם בקטע allprojects.
  2. מוסיפים את יחסי התלות של ספריות ML Kit Android לקובץ GRid ברמת האפליקציה של המודול, שהוא בדרך כלל app/build.gradle:

    כדי לקבץ את המודל עם האפליקציה:

    dependencies {
      // To recognize Latin script
      implementation 'com.google.mlkit:text-recognition:16.0.1'
    
      // To recognize Chinese script
      implementation 'com.google.mlkit:text-recognition-chinese:16.0.1'
    
      // To recognize Devanagari script
      implementation 'com.google.mlkit:text-recognition-devanagari:16.0.1'
    
      // To recognize Japanese script
      implementation 'com.google.mlkit:text-recognition-japanese:16.0.1'
    
      // To recognize Korean script
      implementation 'com.google.mlkit:text-recognition-korean:16.0.1'
    }
    

    כדי להשתמש במודל ב-Google Play Services:

    dependencies {
      // To recognize Latin script
      implementation 'com.google.android.gms:play-services-mlkit-text-recognition:19.0.1'
    
      // To recognize Chinese script
      implementation 'com.google.android.gms:play-services-mlkit-text-recognition-chinese:16.0.1'
    
      // To recognize Devanagari script
      implementation 'com.google.android.gms:play-services-mlkit-text-recognition-devanagari:16.0.1'
    
      // To recognize Japanese script
      implementation 'com.google.android.gms:play-services-mlkit-text-recognition-japanese:16.0.1'
    
      // To recognize Korean script
      implementation 'com.google.android.gms:play-services-mlkit-text-recognition-korean:16.0.1'
    }
    
  3. אם בוחרים להשתמש במודל ב-Google Play Services, אתם יכולים להגדיר את האפליקציה כך שתוריד את המודל למכשיר באופן אוטומטי אחרי שהאפליקציה מותקנת מחנות Play. כדי לעשות את זה, צריך להוסיף את הפרטים הבאים: הצהרה לקובץ AndroidManifest.xml של האפליקציה:

    <application ...>
          ...
          <meta-data
              android:name="com.google.mlkit.vision.DEPENDENCIES"
              android:value="ocr" >
          <!-- To use multiple models: android:value="ocr,ocr_chinese,ocr_devanagari,ocr_japanese,ocr_korean,..." -->
    </application>
    

    אפשר גם לבדוק באופן מפורש את זמינות המודל ולבקש הורדה באמצעות ModuleInstallClient API של Google Play Services. אם לא מפעילים מודל זמן התקנה מוריד או מבקשים הורדה מפורשת, המערכת מורידה את המודל בזמן הפעלת הסורק. הבקשות ששלחת לפני ההורדה לא הניבו תוצאות.

1. יצירת מכונה של TextRecognizer

יוצרים מופע של TextRecognizer ומעבירים את האפשרויות שקשורה לספרייה שהצהרת על תלות בה:

Kotlin

// When using Latin script library
val recognizer = TextRecognition.getClient(TextRecognizerOptions.DEFAULT_OPTIONS)

// When using Chinese script library
val recognizer = TextRecognition.getClient(ChineseTextRecognizerOptions.Builder().build())

// When using Devanagari script library
val recognizer = TextRecognition.getClient(DevanagariTextRecognizerOptions.Builder().build())

// When using Japanese script library
val recognizer = TextRecognition.getClient(JapaneseTextRecognizerOptions.Builder().build())

// When using Korean script library
val recognizer = TextRecognition.getClient(KoreanTextRecognizerOptions.Builder().build())

Java

// When using Latin script library
TextRecognizer recognizer =
  TextRecognition.getClient(TextRecognizerOptions.DEFAULT_OPTIONS);

// When using Chinese script library
TextRecognizer recognizer =
  TextRecognition.getClient(new ChineseTextRecognizerOptions.Builder().build());

// When using Devanagari script library
TextRecognizer recognizer =
  TextRecognition.getClient(new DevanagariTextRecognizerOptions.Builder().build());

// When using Japanese script library
TextRecognizer recognizer =
  TextRecognition.getClient(new JapaneseTextRecognizerOptions.Builder().build());

// When using Korean script library
TextRecognizer recognizer =
  TextRecognition.getClient(new KoreanTextRecognizerOptions.Builder().build());

2. הכנת תמונת הקלט

כדי לזהות טקסט בתמונה, צריך ליצור אובייקט InputImage מתוך Bitmap, media.Image, ByteBuffer, מערך בייטים או קובץ במכשיר. לאחר מכן, מעבירים את האובייקט InputImage אל שיטת processImage של TextRecognizer.

אפשר ליצור InputImage ממקורות שונים, מוסבר על כל אחד מהם בהמשך.

באמצעות media.Image

כדי ליצור InputImage מאובייקט media.Image, למשל כשמצלמים תמונה המצלמה של המכשיר, מעבירים את האובייקט media.Image ואת ל-InputImage.fromMediaImage().

אם משתמשים ספריית CameraX, OnImageCapturedListener ImageAnalysis.Analyzer מחלקות מחשבים את ערך הסבב עבורך.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

אם לא משתמשים בספריית מצלמה שמאפשרת לקבוע את כיוון הסיבוב של התמונה, הוא יכול לחשב אותו על סמך זווית הסיבוב של המכשיר וכיוון המצלמה החיישן במכשיר:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

לאחר מכן, מעבירים את האובייקט media.Image הערך של מעלה הסיבוב ל-InputImage.fromMediaImage():

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

שימוש ב-URI של קובץ

כדי ליצור InputImage מ-URI של קובץ, מעבירים את ההקשר של האפליקציה ואת ה-URI של הקובץ InputImage.fromFilePath() זה שימושי כאשר צריך להשתמש ב-Intent ACTION_GET_CONTENT כדי לבקש מהמשתמש לבחור תמונה מאפליקציית הגלריה.

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

שימוש ב-ByteBuffer או ב-ByteArray

כדי ליצור InputImage מ-ByteBuffer או מ-ByteArray, קודם צריך לחשב את התמונה מעלות סיבוב כפי שתואר קודם לכן עבור קלט media.Image. אחר כך יוצרים את האובייקט InputImage עם מאגר נתונים זמני או מערך, יחד עם גובה, רוחב, פורמט קידוד צבעים ומידת סיבוב:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

באמצעות Bitmap

כדי ליצור InputImage מאובייקט Bitmap, צריך ליצור את ההצהרה הבאה:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

התמונה מיוצגת על ידי אובייקט Bitmap ביחד עם מעלות סיבוב.

3. עיבוד התמונה

מעבירים את התמונה ל-method process:

Kotlin

val result = recognizer.process(image)
        .addOnSuccessListener { visionText ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

Java

Task<Text> result =
        recognizer.process(image)
                .addOnSuccessListener(new OnSuccessListener<Text>() {
                    @Override
                    public void onSuccess(Text visionText) {
                        // Task completed successfully
                        // ...
                    }
                })
                .addOnFailureListener(
                        new OnFailureListener() {
                            @Override
                            public void onFailure(@NonNull Exception e) {
                                // Task failed with an exception
                                // ...
                            }
                        });

4. חילוץ טקסט מבלוקים של טקסט מזוהה

אם פעולת זיהוי הטקסט מצליחה, אובייקט Text מועבר אל 'המאזינים להצלחה'. אובייקט Text מכיל את הטקסט המלא שמזוהה ב- את התמונה ואפס אובייקטים TextBlock או יותר.

כל TextBlock מייצג קטע טקסט מלבני, שמכיל אפס אובייקטים או יותר מסוג Line. כל אחד האובייקט Line מייצג שורת טקסט שמכילה אפס או יותר אובייקטים מסוג Element. כל Element מייצג מילה או ישות דמוית מילה שמכילה אפס או יותר Symbol אובייקטים. כל Symbol מייצג תו, ספרה או ישות דמוית מילה.

לכל TextBlock, Line, אובייקט Element ו-Symbol, הוא יכול לקבל את הטקסט שמזוהה באזור, את הקואורדינטות התוחמות אזור ומאפיינים רבים אחרים כגון מידע על סבב, ציון מהימנות וכו'

לדוגמה:

Kotlin

val resultText = result.text
for (block in result.textBlocks) {
    val blockText = block.text
    val blockCornerPoints = block.cornerPoints
    val blockFrame = block.boundingBox
    for (line in block.lines) {
        val lineText = line.text
        val lineCornerPoints = line.cornerPoints
        val lineFrame = line.boundingBox
        for (element in line.elements) {
            val elementText = element.text
            val elementCornerPoints = element.cornerPoints
            val elementFrame = element.boundingBox
        }
    }
}

Java

String resultText = result.getText();
for (Text.TextBlock block : result.getTextBlocks()) {
    String blockText = block.getText();
    Point[] blockCornerPoints = block.getCornerPoints();
    Rect blockFrame = block.getBoundingBox();
    for (Text.Line line : block.getLines()) {
        String lineText = line.getText();
        Point[] lineCornerPoints = line.getCornerPoints();
        Rect lineFrame = line.getBoundingBox();
        for (Text.Element element : line.getElements()) {
            String elementText = element.getText();
            Point[] elementCornerPoints = element.getCornerPoints();
            Rect elementFrame = element.getBoundingBox();
            for (Text.Symbol symbol : element.getSymbols()) {
                String symbolText = symbol.getText();
                Point[] symbolCornerPoints = symbol.getCornerPoints();
                Rect symbolFrame = symbol.getBoundingBox();
            }
        }
    }
}

הנחיות להוספת תמונה

  • כדי ש-ML Kit יוכל לזהות טקסט באופן מדויק, תמונות הקלט חייבות להכיל שמיוצג על ידי כמות מספקת של נתוני פיקסלים. במצב אידיאלי, כל תו צריך להיות בגודל 16x16 פיקסלים לפחות. בדרך כלל אין לשיפור הדיוק של התווים, כך שהם יהיו גדולים מ-24x24 פיקסלים.

    כך, לדוגמה, תמונה בגודל 640x480 יכולה להתאים לסריקת כרטיס ביקור שתופס את כל הרוחב של התמונה. כדי לסרוק מסמך שהודפס על על נייר בגודל אות, ייתכן שיהיה צורך בתמונה בגודל 720x1280 פיקסלים.

  • מיקוד לא טוב של תמונה עלול להשפיע על רמת הדיוק של זיהוי הטקסט. אם אתם לא כדי לקבל תוצאות מקובלות, נסו לבקש מהמשתמש לצלם מחדש את התמונה.

  • אם אתה מזהה טקסט באפליקציה בזמן אמת, עליך לוקחים בחשבון את המידות הכוללות של תמונות הקלט. קטן יותר לעיבוד מהיר יותר של תמונות. כדי לקצר את זמן האחזור, ודאו שהטקסט מכיל את התמונה ככל האפשר, ולצלם תמונות ברזולוציה נמוכה יותר (תוך התחשבות בדיוק בדרישות שצוינו למעלה). מידע נוסף זמין במאמר הבא: טיפים לשיפור הביצועים.

טיפים לשיפור הביצועים

  • אם משתמשים Camera או camera2 API, הפעלות של הגלאי באמצעות ויסות נתונים (throttle). אם מדובר בסרטון חדש הופכת לזמינה כשהגלאי פועל, משחררים את הפריים. לצפייה VisionProcessorBase באפליקציה לדוגמה של המדריך למתחילים.
  • אם אתם משתמשים ב-API של CameraX, יש לוודא שאסטרטגיית הלחץ החוזר מוגדרת לערך ברירת המחדל שלה ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST כך אפשר להבטיח שרק תמונה אחת תוצג לניתוח בכל פעם. אם עוד תמונות שנוצרות כשהכלי לניתוח נתונים עמוס, הוא יוסר באופן אוטומטי ולא ימתין בתור משלוח. לאחר שהתמונה שמנתחת נסגרת על ידי קריאה ImageProxy.close(), התמונה האחרונה הבאה תישלח.
  • אם משתמשים בפלט של הגלאי כדי להציג גרפיקה בשכבת-על מקבלים קודם את התוצאה מ-ML Kit ואז מעבדים את התמונה וליצור שכבת-על בשלב אחד. הוא מוצג לפני השטח של המסך פעם אחת בלבד לכל מסגרת קלט. לצפייה CameraSourcePreview וגם GraphicOverlay, באפליקציה לדוגמה של המדריך למתחילים.
  • אם משתמשים ב- Camera2 API, מצלמים תמונות ב פורמט של ImageFormat.YUV_420_888. אם משתמשים בגרסה הישנה של ה-API של המצלמה, מצלמים תמונות ב פורמט של ImageFormat.NV21.
  • כדאי לצלם תמונות ברזולוציה נמוכה יותר. עם זאת, חשוב גם לזכור בדרישות של מידות התמונה ב-API הזה.